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Abstract
This paper classifics some metrics according to their length-related properties, expanding this theoretical
basis into a practical and cfficient algorithm for computing L;-shortest paths in general plane regions.

Many problems have “shortest path” as a key word, but all of them do not involve the same notions. This
paper deals with a degenerate case. For a given norm on a vector space, there usually exists exactly one
shortest path between any two points, but for some quirky norms—the L;-norm being a good example—
this is not the case. Indeed, for almost any two points, the number of shortest paths is infinite in that
case. It is suitable to call such norms “degenerate”. A close study of them provides us with a satisfying
geometric characterization of the induced shortest paths. The key notion is the generalization of convexity
to arbitrary metrics, duc to Menger.

For computational purposes, the existence of a wide class of possible shortest paths can be very useful,
because an algorithin can choose the easiest to compute. We further examine the two-dimensional case for
the Ljy-norm. The resulting algorithm is reasonably simple and has an optimal complexity in the worst
case: given an arrangement of k regions described by n monotone curves, the algorithm first performs a
preprocessing in O(n logn) time, using O(n) space, then computes a shortest path between any two points
m time O(klogk + n).

Fig. 1. A sample region, and a rectilinear shortest path.

1-Shortest paths and degenerate metrics
1-1 The notion of a shortest path

Definition: Length, Shortest paths
Consider a metric space (E, d) together with a path f:[a,b] — E. A polygonal line A underlying
Jisdefined as a sequence of points A =(Ag, ..., A;) such that thereexistsa L 2o < 23 < - L2, € b
verifying A; = f(x;). We denote by | f] the set of such lines.
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The length of A is the positive nuinber
(A) = d(dio1, \)
i=1

and the length of f itself is the lowest upper bound of the lengths of all polygonal lines underlying
it. That is,

L(f) = sup I(A).
Aels]

A shortest path between two points a and b is obviously a path whose length is minimal amidst
all the paths joining a and b.

This definition is suited for our purposes, because it involve no explicit condition of differentiability.
Although in the Euclidean case curves of finite length turn out to be differentiable alinost eyerywhere, no
such property is true in the general case. It is actually easy to construct curves of finite L;-length that are
nowhere differentiable.

1-2 Metric Convexity

In order to build shortest paths, a discrete notion of convexity, due to Menger, is very uscful. Consider a
triplet of points a, b, ¢ in a metric space. The point c is said to sit between a and b if d(A,C) + (I(C,_B) =
d(A, B) and furthermore c is distinct from a and from b.

A subset P of E is called metrically convex if : for every couple of points a, b in P, there exists a point ¢
in P sitting between a and b.

MENGER’S THEOREM
Let P be a metrically convex, complete subset of a metric space . For any two pots a, b of 12,
there exists a shortest path f between a and b remaining within . Furthermore, [ is a metric
segment, that is: f Is isometric to a segment of R.
Conversely, metric scgments are metrically convex.

Let (E, v) be a normed metric space and consider the unit ball of v, which is a closed, convex, symimetric
set. As for every convex set, its points are either extremal or non extremal points. Furthermore, since
this ball is symmetric, extremal points come in pairs, corresponding to directions of the vector space. For
instance, the plane Li-norm admits two extremal directions: the horizontal and vertical directions, and
shortest paths for that norm are essentially curves monotone for thesc directions; the plane Buclidean norm
admits every direction as an extremal direction and shortest paths are straight lines, i.c., curves monotone
with respect to every direction.

In the n-dimensional case though, the notion of extremal point is not fine enough to characterize a given
norm. The following generalization is suitable though.

Definition: Extremal Set
Let S be a subset of a convex set C. This subset is an extremal sct if: for every point a of S,
a can not be obtained as a linear combination of any two points of C'\ S.

Any convex set has got a nice decomposition in extremal sets. For the unit ball of a norm, this decom-
position is closely related to metrically convex sets, hence to shortest paths.

THEOREM : CELL DECoMPOSITION OF CONVEX SETS
Let C be a convex set in a vector space of finite dimension n. There exists one and only one cell
decomposition {D;} of C verifying the following properties.
- Each D; is convex.
- Each D; is an extremal set.
- Each point of C is an interior point of exactly one D;.

For a given set of extremal directions D; and a point a, the associated extremal cone is the peneil of
straight lines going through «a, of directions belonging to ;.

THEOREM : CHARACTERIZATION OF CONVEX SETS
Let (E,n) be a finite dimensional vector space, of ccllular decomposition ;. Let 2 be a closed
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subset of £ Then P2 is convex if and only if every extremal cone associated to any point of I” and
any extremal set g cuts I’ through a connected component.

So topologically, shortest paths are defined by the cellular decomposition of the norm. FFurthermore,
almost every convex has a trivial decomposition: all its boundary points are extremal, so the generic
casc reduces to the Euclidean case. For degenerate norms though, the situation is much more intricate.
Fortunately, we can still rely upon the simple notion of metrically convex sets to build algorithms.

2-The algorithm

2-1 First principles

The use of metric convexity in an algorithin relies on the following scheme: cut the starting region in convex

subregions, perform a combinatorial exploration of the resulting graph, and use geometric properties to find

a path in that graph which corresponds to an actual shortest path, then build this path. The key points

are the following:

- Locality: two points in the same convex region can be linked by a shortest path remaining within that
region. We don’t have to consider other regions to compute elementary paths.

- Combinatorial simplicity: there exists a shortest path between any two points which does not cross the
same convex region twice. So we just have to consider simple paths in the graph, which allows for
interesting simplifications.

‘This is a very general scheme. In that paper, we focus on the two dimensional case of the Li-metric. A
pleasant surprise awaits us: since we didn’t take any differentiability assumption, the class of regions that
we can process is very genceral. Instead of polygonal regions, it is perfectly natural here to consider a region
bounded by piccewise monotone curves. We denote by n the number of monotone pieces, and by k the
number of holes of the region. The first step of the algorithm is very simple. '

Proposition: ‘
Using a sweep-line algorithm, it is possible to cut the region in O(n) convex subsets, using O(nlogn)
time and O(n) space.

\

Fig. 2. Decomposition in convex sub-regions

Figures 1 and 2 show a polygonal region and a sample decomposition. Instead of a graph of regions,
it scems more practical to consider a “dual” graph, where each region is represented by an edge of the
graph, so that vertices of that graph correspond to the vertical lines cutting the region. The principle of
combinatorial simplicity applies to that graph as well.

2-2  Analysis of the graph

"The size of the graph of regions is O(n), which is big for practical applications. A more significant parameter
for combinatorial properties would be the number of holes k. Since we are only interested in simple paths,
we can trim the graph down to this size.

- Discard simply-connccted components. Two points of the graph belong to the same simply-connected
component if there is exactly one simple path joining them. This is an equivalence relation and it is
actually well-known: two adjoining vertices belong to the same simply-connected component if the edge
between them is an isthmus.
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- Eliminate chains. A chain is a path whose internal vertices have degree exactly two. Obviously, any
simple path cannot turn back in the middle of a chain.

- Take cut points into account. It turns out that eliminating simply-connected components can introduce
vertices of arbitrarily high degree in the graph. Fortunately, such vertices are also cut-points. A close
study of that property enables us to consider only subgraphs whose vertices have bounded degree for our
search.

Proposition:
The graph of regions is reducible to a simpler graph of size O(k) in time O(n). Every simple path of
this graph corresponds to exactly one simple path of the original graph, and the correspondence can be
computed in O(n) time.
This simpler graph has not a bounded degree, but for two given points, the search of a simple path can
be narrowed to a subgraph of bounded degree at no additional cost.

Figure 2 shows a connected component of the graph of regions. Thick cdges are the edges remaining in
the quotient graph.

2-3 Geometric paths

In the Ly metric, a special trick allows for a very efficient computation of shortest paths.

Convex regions are bounded by vertical segments and to obtain a shortest path, it is enough to obtain
clementary shortest paths between these segments. That can be done in O(s) time, where s is the size of
that region. Now, gluing together such paths is very simple: adding the vertical segment joining their tips
does the trick.

The final step of the algorithm is a variant of Dijkstra’s classical algorithin: cach edge of the final graph
corresponds to a chain of convex regions, with an associated shortest path length and path tips. In contrast
with the classical Dijkstra scheme, where vertices don’t hold any inforination, we have to glue paths together
at each vertex—or to trudge through simply connected regions at cut-points. Taking these modifications
into account, the final search for a combinatorial path is an O(k logk) step. Finally, the actual computation
of the path takes O(n) time.

2-4 Optimality and implementation concerns

There exist simply connected regions with shortest paths which can’t be described with less than 2 monotone
curves, so the query-time is optimal. Using Chazelle’s results on polygonal triangulation. the theoretical
time of the preprocessing can be reduced to O(n), though the author expresses some doubts as to the
practicality of the process. ..

In the general case, the graph of regions can be any planar graph of degree 3 with any positive weight on
the edges, so any improvement depends heavily upon a better algorithm for finding combinatorial shortest,
paths in such graphs.

From a pratical standpoint, the implementation of the algorithm is a bit tedious, but straightforward.
It exhibits a very good numerical stability, the only tricky part being the sweep-line- which has been
thoroughly studied in the literature.
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