162

Finding Smallest Paths in Rectilinear Polygons on a
Hypercube Multiprocessor

Afonso Ferreira®
CNRS - LIP
Ecole Normale Supérieure de Lyon
69364 Lyon Cedex 07, France

Abstract

A smallest path between two points in a polygon is
a rectilinear path that simultaneously minimizes dis-
tance and the number of line segments in the path. In
this abstract, we show how to find a smallest path be-
tween any two points in a simple rectilinear polygon
with n vertices on a hypercube multiprocessor with
maz(n, p) processors in time O(t + log n(loglogn)?)
where p = nlogn and t = O(log?n) are the current
best bounds for finding trapezoidal decompositions.

1 Introduction

The design and analysis of geometric algorithms for
parallel architectures is a young research area that
has only received serious attention during the last five
or six years. Even so, there are several powerful gen-
eral techniques for designing geometric algorithms for
the (shared-memory) PRAM model of parallel com-
putation (e.g., [1, 2]), which, together with the large
collection of other results for PRAM’s (see (7] for a
survey), can be used to design quite sophisticated al-
gorithms. In contrast, the development of geometric
algorithms for distributed-memory parallel architec-
tures is in a fairly primitive state, although a few gen-
eral techniques have been developed recently [5, 6].
The concentration of researchers on the PRAM model
may seem surprising at first since the vast majority of
existing parallel architectures are of the distributed-
memory type, but the attention is not difficult to ex-
plain. The shared memory of the PRAM effectively
eliminates the data routing and collision avoidance
problems that dominate computations in distributed-
memory architectures and permits the development

*On leave from the University of Sao Paulo (Brazil), project
BID/USP.

tSupported by the Natural Sciences and Engineering Re-
search Council of Canada under Grant No. A-0322 and by the
Centre National de 1a Recherche Scientifique.

Joseph G. Peters!
School of Computing Science

Simon Fraser University
Burnaby, B.C., V5A 156, Canada

of the sophisticated data structures needed to solve
many geometry problems. Furthermore, the funda-
mental recursive doubling (pointer jumping, shortcut-
ting) technique, which is used in almost all PRAM al-
gorithms has no efficient analog on most distributed-
memory parallel architectures. In this abstract, we
describe an efficient parallel algorithm to find small-
est paths in simple rectilinear polygons on hypercube
multiprocessors, currently one of the most popular
types of distributed-memory parallel architectures.

A smallest path is a rectilinear path that is si-
multaneously a skorfest path with respect to the L,
metric, and a straightest path (i.e., minimum link
path). Smallest paths have applications in VLSI de-
sign (minimizing vies), robot motion planning, and
the design of rush-hour traffic routes. McDonald and
Peters [8] showed that there is a smallest path be-
tween any pair of points in any simple rectilinear
polygon and developed an optimal O(n) time sequen-
tial algorithm for finding smallest paths. They also
presented an O(logn) time, O(nlogn) space paral-
lel algorithm for an n processor CREW PRAM. The
most expensive steps in the PRAM algorithm are four
trapesoidal decompositions using an algorithm from
[2]. The remainder of the algorithm runs in O(logn)
time on the weaker EREW PRAM medel with only
n/log n processors and O(n) space.

A direct simulation of the PRAM algorithm from
[8] on & hypercube takes O((lognloglogn)?) time
with nlogn processors. The algorithm presented in
this paper requires only O(log® n) time and nlogn
processors. However, the cost of our hypercube algo-
rithm is dominated by several invocations of a trape-
zoidal decomposition algorithm from [6]. The remain-
der of our algorithm uses O(logn(loglogn)?) time
and only n processors. As a by-product of our algo-
rithm, we have developed a new hypercube technique
for finding and eliminating nested pairs in parenthe-
sis systems, and a modified broadcasting technique
for eliminating staircases. Both techniques can be



implemented in O(log n) time on a hypercube with n
processors. It may be possible to improve our proces-
sor bound to n by replacing the trapezoidal decompo-
sitions with simpler and more problem-specific com-
putations. ‘L'he algorithm in [6] uses m-way search
trees which are quite general and powerful.

Our hypercube algorithm is based on the sequen-
tial algorithm from [8] which is outlined in the next
section. The hypercube algorithm, presented in the
third section, uses standard hypercube data move-
ment operations which are described in [6]. For de-
tails of the hypercube trapezoidal decomposition al-
gorithm, also see [6]. The proof of correctness of our
hypercube algorithm differs from the analysis in (8]
in that several new technical lemmas are needed to
establish the correctness of our corner location pro-
cedure, the nested pair elimination method, and the
staircase elimination procedure. To keep our abstract
short, we have eliminated these technical lemmas and
their proofs (which are long, but not difficult). Most
implementation details of the algorithm in Section 3
have been omitted for the same reason.

Recently, de Berg [4] has solved a (sequential)
query version of the smallest paths problem with
O(logn) query time and O(nlogn) preprocessing
time. Sack [9] has also studied several problems in-
volving smallest paths. We will assume familiarity
with standard computational geometry terminology.

2 Sequential Algorithm

To find a smallest path between two points s and ¢t
in a polygon Q, start by drawing a line down from
s until the boundary of Q is encountered, turn left,
follow the boundary of Q until directly under ¢, and
draw a line up to t. (See Figure 1.) The simple path
produced by this process is called a starting path.

a|

Figure 1: A starting path from s to t.

Figure 2 shows five different types of transforma-
tions that can be used to improve a starting path. In

163

the diagrams, thin lines indicate the boundary of a
polygon, thick lines indicate paths, striped regions in-
dicate interior regions of a polygon, and (solid) grey
regions are exterior to a polygon. Transformations
veS and vvS are “shortcut” transformations which
reduce both distance and number of segments by re-
placing an arbitrary simple path with a chord be-
tween a visible pair. Visible pairs can be obtained
from a trapezoidal decomposition of Q. Transforma-
tions U and Z reduce distance and the number of seg-
ments respectively, and Transformation C eliminates
unnecessary collinear points.

An ending path is a simple path that is obtained
from a starting path by repeatedly applying transfor-
mations from Figure 2, in such a way that simplic-
ity of the path is maintained, until no further trans-
formations can be made. McDonald and Peters [8]
proved that an ending path is a smallest path.

3 Parallel Algorithm

An m-dimensional hypercube has n = 2™ processors
(PE’s) labelled with the integers from 0 ton—1. Two
PE’s are neighbours iff the binary representations of
their labels differ in exactly one bit position. The
input consists of a polygon Q and two points s and
t within Q. (We consider the boundary of Q to be
“within” Q.) Q is presented as a sequence of vertices
and edges in counterclockwise traversal order of its
boundary. The vertices of Q are stored in traversal
order in consecutively numbered PE’s. Each edge is
stored with its first (in traversal order) endpoint. The
coordinates of s and t are known to all PE’s. The out-
put of the algorithm is a smallest path between s and
t, stored as a sequence of vertices and edges in con-
secutively numbered PE’s starting with s and its inci-
dent edge in PEo. In the following description, steps
of the smallest paths algorithm are shown in italic
font and details of the hypercube implementation are
in roman font. Standard hypercube operations are
shown in bold font. All of these standard operations
can be implemented in time O(logn) with n PE’s ex-
cept sort which takes O(log n(loglog n)2) time. (See
[6, 3] for details.) The current best time and proces-
sor bounds for finding a trapezoidal decomposition
are O(log? n) and nlogn respectively [6], and these
costs dominate our algorithm.

1. Find a starting path from s to t by modifying the
polygon Q as follows so that s and t occur at corners
of the modified polygon. First find the horizontal
and vertical chords through s. This divides Q into
4 subpolygons, each of which has s as one corner.
One of the subpolygons contains t and the other



164

:

vvS

N

Figure 2: Path Transformations.

three are discarded. (We will ignore the degenerate
cases where s is on the boundary of Q.) The chords
through t are handled similarly. Now, s and t divide
the boundary of the modified polygon (which we will
also call Q in subsequent steps) into two paths, P
and Q\ P, from s to t. The starting path P is the
counterclockwise path starting at s.

e Each PE determines if the vertical or horizontal
line through s intersects its line segment. Use find-
min operations to select the segments immediately
below, above, left, and right of s. Repeat for . Do
a cyclic shift of Q so that the segment below s is
stored in PE,.

o Let ap, a;, a3, and a3 be the (indices of the) four
selected boundary segments with respect to s. De-
fine by, by, b2, and b3 similarly for . Locate b
(the segment immediately below t) in the sorted
list ao, a1, a2, a3. If a; < bo < a(i41)moda, then
the parts of the chords from s to the boundary seg-
ments a; and 4(;41)mod4 form the corner at s of
the subpolygon that should be retained. Similarly,
find b; < ap < b(j4+1)mod4 to determine the corner
containing ¢.

e Mark all vertices with indices between a; and
@(i41)mod4 and mark all vertices with indices be-
tween b; and b(j ;1)moqs- Concentrate all vertices
with two marks. These are the vertices on the start-
ing path. Create the new corners at s and ¢. Per-
form a cyclic shift so that s is stored in PEg.

2. Find all localions where “horizonlal” shortcul

transformations can be applied. Each visible pair
has an associated pair of integers {corresponding to
the PE’s that hold the elements). These pairs of in-
tegers are “properly nesied” in the sense that no {wo
pairs (z,, z3) and (1, y2) have x4 < gy < 23 < yy.
Furthermore, elimination of a pair also climinates
all pairs nested within it [8]. Therefore, it is only
necessary to consider non-nested pairs.

e Use the trapezoidal decomposition algorithm from

(6] to find the horizontal trapezoidal edges of Q.
Use a sorted list of horizontal edges of Q with a
modified bitonic merge to extract the horizontal
visible pairs.

o To eliminate nested pairs, first concentrate all

vertices. Then do a modified partial sum in
which, at each dimension exchange, a PE in the
higher subcube is marked if the pair received from
the other subcube encloses the pair it currently
stores. Now send all unmarked visible pairs back
to their original PE’s (i.e., according to the first
components of the pairs) and generalize accord-
ing to the second components, marking all PE’s
in between the two components. Finally, concen-

“trate all unmarked PE identifiers to obtain the list

of non-nested pairs.

3. In parallel, perform the shoricutl transformations

associated with all non-nested pairs. Also apply C
transformations, if possible, after each shortcut.



e Each PE examines the information in adjacent
PE’s to identify locations where new edges (chords)
and vertices must be created. Do a partial sum
to determine the number of new vertices to be cre-
ated followed by a distribute to actually create
the positions. The information to fill in each po-
sition now comes from vertices that are a constant
number of positions away. C transformations are
now performed in a similar way.

4. Repeat steps 2 and 3 in the vertical direction.

5. Any remaining visible pairs of Q will have one
endpoint on P and one endpoint on Q\ P, so only
U, Z, and C transformations are possible.

e Find all horizontal visible pairs and store them so
that each vertex of Q \ P knows its visible pair.
Concentrate the visible pairs by first (i.e., Q \ P)
coordinate. Identify locations for U transforma-
tions and mark the corresponding PE’s at the P
end. The marked PE’s now store a list of locations
on P at which U transformations should be made in
reverse order of second (i.e., P) coordinate. Con-
centrate, invert, and distribute the list to the
marked PE’s. Perform the U transformations and
any required C’s using the method of Step 3.

o Repeat for vertical U’s and C’s.

6. The only possible remaining transformations are
Z’s and the C’s that follow them. Z’s can form
staircases, and some staircases (or paris of stair-
cases) can be eliminated in two incompatible ways
which we will call “forward” and “backward”.

e Find all horizontal and vertical visible pairs. Stair-
cases will be identified and eliminated by the cre-
ation of cluster points in one pass of an “ascend”
algorithm, where exchanges within a hypercube di-
mension take place at each step. C transformations
should also be performed, when necessary. The
cluster points are potential locations for the new
vertices that are created by Z transformations. The
implementation is based on the following properties
which are true after every step.

1. Every processor in a subcube knows the visible
pair of the only candidate (vertex or cluster
point) that can be Z-transformed forwards.

2. Every processor in a subcube knows the visible
pair of the only candidate (vertex or cluster
point) that can be Z-transformed backwards.

3. Every processor knows which candidates are
in the upper dimensional part of its subcube
and which are in the lower dimensional part.

In each step, all PE’s exchange information in the
current dimension and then compare the current
backward candidate from the upper subcube with

165

the forward candidate from the lower subcube to
determine whether a new cluster is to be created.
If a new cluster is created, then all processors in the
subcube must update their candidate information.

e The path that results when all Z (and C) trans-

formations have been performed can be recovered
by creating the new vertices and edges associated
with cluster points and deleting vertices “covered”
by cluster points. The method is similar to Step 3.

References

(1] A. Aggarwal, B. Chazelle, L. Guibas, C.
O’Dlinlaing, and C. Yap, “Parallel Computa-
tional Geometry,” Algorithmica, vol. 3, pp. 293-
327, 1988.

[2] M.J. Atallah, R. Cole, and M.T. Goodrich, “Cas-
cading Divide-and-Conquer: A Technique for
Designing Parallel Algorithms,” SIAM J. Com-
put., vol. 18, pp. 499-532, 1989.

[3] R. Cypher and C.G. Plaxton, “Deterministic
Sorting in Nearly Logarithmic Time on a Hy-
percube and Related Computers,” ACM Sympo-
stum on Theory of Computing, 1990.

[4] M. de Berg, “On Rectilinear Link Distance,”
Tech. Rep. RUU-CS-89-13, Dept. of Computer
Science, Univ. of Utrecht, 1989.

[5) F. Dehne, A. Ferreira, and A. Rau-Chaplin,
“Parallel Fractional Cascading on a Hyper-
cube Multiprocessor,” Proceedings of the Aller-
ton Conference on Communication, Control and
Computing, Monticello, Ill., 1989.

[6] F. Dehne and A. Rau-Chaplin, “Implementing
Data Structures on a Hypercube Multiprocessor,
and Applications in Parallel Computational Ge-
ometry,” Jour. of Parallel and Distributed Com-
puting, vol. 8, pp. 367-375, 1990.

[7) RM. Karp and V. Ramachandran, “Parallel
Algorithms for Shared-Memory Machines,” in
Handbook of Theoretical Computer Science, Vol-
ume A: Algorithms and Complezity, ed. J. van
Leeuwen, MIT Press, 1990.

(8] K.M. McDonald and J.G. Peters, “Smallest
Paths in Simple Rectilinear Polygons,” Tech.
Rep. TR 89-4, School of Computing Science, Si-
mon Fraser Univ., 1989. '

[9] J. Sack, “Rectilinear Computational Geometry,”
Ph.D. Thesis, School of Computer Science, Car-
leton Univ., 1984.



