171

The Exact Fitting Problem for Points

Leonidas Guibas} Mark Overmarstand Jean-Marc Robert?

April 3, 1991

1 Introduction

A problem which arises in areas such statistical analysis, pattern analysis and computer graphics is that
of approximating sets of points by lines where the “best” line is determined according to some criterion.
For example, the line must minimizize the maximum orthogonal distances between any of the points and
the line or minimize the sum of theses distances [HIIRY]. In this paper, we consider an another variation
of this problem: the eczact fitling problem for a set of N points in the plane consists of finding a line
containing the maximum number of points of the set. This problem can be solved easily in O(N?) time
by transforming the points into lines in the dual space [Bro80] and by using the topological line sweep
algorithm of Edelsbrunner and Guibas [EG89]. A solution to the exact fitting problem corresponds to a
vertex of the line arrangement incident to the maximum number of lines. Hence, by sweeping the line
arrangement, it is possible to find such a vertex in O(N?) time. This is the best algorithm known so far
to determine whether there exist three collinear points in a set of points; proving its optimality is a well
known open problem (sce [Ede88]). On the other hand, it is quite simple to determine in linear time if
there is a line containing “almost” all the N points i.e. N — ¢ points for any fixed ¢. In this case, we simply
have to take 2¢ + 2 different points and to pair them up. One of the ¢ + 1 couples should determine a line
conlaining N — ¢ points.

In this paper, we present an algorithm to find all the lines containing at least M of the N points in

0 (min {%—3 log ;,V—,, Nz}) time. The parameter M is given with the set of N points as input. We should

notice that this solution gives an optimnal linear time algorithm when M represents a fixed fraction of the
points ie. M = €N for a constant 0 < ¢ < 1. We also show how to use this algorithm to find a line

containing the maximum number of points of the set in O (min {Nﬁzlog }"—V!-, N 2}) time. In this case, only

the set of N points is given as input and the parameter M corresponds to the number of points contained
in the solution.

2 The Exact Fitting Algorithm

We begin by presenting a simple algorithm solving the exact fitting problem in O(%log %) time when
M € O(N/logN).
Algorithm MinN1

Input: Sct S of N points and an integer 3< M < N.
Qutput: All the lines containing at least M points.

1. If M < 4, dualize the points and use the topological line sweep algorithm to find all the vertices
incident to M lines and stop.

*Laboratory of Computer Science, MIT, Cambridge
tDepartment of Computer Science, University of Utrecht, Utrecht
tSchool of Computer Science, McGill University, Montréal

172

2. Split S into the subsets S; and S; of [N/2] and [N/2] points , respectively.
3. For each subset, find all the lines containing at least | M/2] points.
4. For each candidate line found in Step 2, determine how many points lie on it.

The analysis of this algorithm relies heavily on the following lemmas:

‘Lemma 1 [STI83], [CEG*90] Let I(z,y) be the number of incidences between z lines and y points in the

plane. Then, I(z,y) € O(z*3y*3 + z + y).

Lemma 2 [Aga90], [Mat90] The incidences between z lines and y points in the plane can be computed in
O(=*3y?*3log?® z + (z + y) log z) time.

The running time of Algorithm MinN1 can be expressed by the recurrence

T(N,M) € O(N? if M =34,
T(N,M) < T(|[N/2],|M[2])+T([N/2],|M/2})+ V(N,M) otherwise .

Here, V(N, M) represents the time taken by Steps 2 and 3. This function depends on the number of
candidate lines found in Step 2 and how fast they can be checked in Step 3 with the algorithm mentioned
implicitly in Lemma 2 determining the incidences between a set of lines and a set of points. Let #lines
be the number of candidate lines from each subproblem i.e. the number of lines containing at least | M /2]

of the | N/2| points. Using Lemma 1, we can show that #lines € O (max {%, %}) Hence, the number

#lines depends whether M? is less than N or not. To simplify the analysis, we suppose that N = 2"
and M = 2™ and replace T'(2",2™) by #(n,m). Furthermore, we split the analysis into two cases. When
2m < n, the number of candidate lines is in O(22"~3™) and the recurrence becomes

t(n, 1) € O,
t(n,m) < 2t(n—1,m— 1)+ 02" I™(2n — 3m)?/3 4 (2°° 3™ 4 2")}(2n — 3m)).

By solving this recurrence, we obtain that #(n,m) € O(2?"~™(n — m)). When 2m > n, the number of
candidate lines is in O(2"~ ™) and the recurrence becomes

t(n,m) < 2t(n — 1,m — 1) 4+ O((22*"™(n — m))*/® + 2"(n — m)).

In this case, the recurrence can be applied as long as 2m > n i.e. 2m — n times, since 2(m — i} > (n — i) if
and only if § < 2m — n. After 2m — n iterations, the value of ¢{(2r — 2m,n — m) is given by the first case
of the analysis. Therefore, the solution is t{n, m) € O(22*~™(n — m) + 2"(n — m)(2m — n)).

Finally, a solution for the general case where N and M are not power of two can also be derived
(see [BB88]). Let n and m be such that 2°~1 < N < 2" and 2™~! < M < 2™. Using the fact that
T(N, M) is eventually non-decreasing in N and non-increasing in M, it is easy to show that T(N, M) <
t(n,m — 1). Therefore, we have T(N, M) € O (L’M—2 log % + Nlog%log %’-) The second term of this
expression becomes dominant for M € Q(N/log N). In order to obtain a better solution when M is
“close” to N, we have to modify the previous algorithm.

Algorithm MinN2

Input: Set of N points S and an integer M < N.
Output: All the lines containing at least M points.

1. Split S into |M?2/N| subsets of [N2/M?] points.
2. For each subset, find all the lines containing at least | N/M| points.

3. For each candidate found in Step 2, determine how many points lie on it.

173

Algorithin MinN2 will be used only when A7® > N2. This corresponds to the case where each subset
defined in Step 1 contains less than M points. The time complexity of this algorithm is given by the
recurrence

T(N, M) < |[M*/N]T([N*/M?],[N/M]) + V(N, M).

By using the same notation and the same assumptions for N and M as we did in the first case and by
using Algorithm MinN1 to solve each subproblem in Step 2, the time complexity of Algorithm MinN2 can
be given by

t(n,m) < O(2*"~™(n — m)) + V(2",2™).

For each subproblem, the number of lines containing at least 2°~™ of the 227-2m points is in O(2"~™).
Therefore, the number of lines found in Step 2 is in O(2™). Fortunately, all these lines do not correspond
to candidate lines. Suppose there are 2™ collinear points. These collinear points define at least (24m~3n)
times the line in Step 2. To obtain this lower bound, we should find the “worst” distribution of the 2™
collinear points among the subproblems to minimize the number of subproblems having 2"~™ of them.
This distribution is obtained by putting 2*~™ — 1 of the points in each subproblem and, then, pack the
remaining 22™~" points in fewest number of subproblems. Hence, the lower bound on the number of times
that the line appeared corresponds to the lower bound on the number of subproblems with at least 2°—™
of the 2™ collinear points i.e. [22™~n /(220=2m _gn-m 4 1)|

Since, each set of at least 2™ collinear points determined at least Q(2%m~3) lines in Step 2, the
maximum number of candidate lines is in O(23"~3™) je. O(2™)/Q(2*™=3"). These candidate lines can
be determined efficiently by adapting the algorithm presented in [MG82] to find the repeated elements
in a multiset. In their paper, Misra and Gries showed how to find the values that occur more than n/k
times in an array of n elements in O(nlog k) time. We simply have to find all the lines appearing at least
Q(24"=3") times in the list of O(2™) lines. This step can be done in O((n — m)2™) time. Therefore, the
running time of Algorithm MinN2 is given by

t(n,m) € O(2>*~™(n —m)) + O(28n/3-2m(p — m)2/3 4 (93-3m 2™)(n — m)).
Since 3m > 2n, t(n,m) € O(22"~™(n — m)). Furthermore, using the same argument as before, we obtain
T(N, M) € O (% log &).

By choosing the brute-force algorithm based on the topological line sweep algorithm when M <log N,
Algorithm MinN1 when M® < N2 and Algorithm MinN2 otherwise, we obtain the following result:

Theorem 3 Let S be a set of N points in the plane. It is possible to determine if there are M collinear
points in S in O (min {yﬁ’-log %,Nz}) time.

This solution can be used to find in the same time complexity the maximum number of collinear points
in a set of N points. Here, the value M represents the number of points lying on the solution line.

Algorithm EF

Input: Set of N points S.
Output: A line containing the maximum number of collinear points.
1. Set i to 1.

2. Find all the lines containing at least N/2* points of S.
3. If there is no such line, increase i by 1 and go to Step 2.
4. If there are such lines, output a line containing the maximum number of points.

Suppose there are M collinear points in S. The algorithm will stop when M > N/2' j.e. after [log %
iterations. Therefore, the running time is given by

[log £51
T(N,M)€eO(Y T(N,N/2%).

i=1

174

The following corollary summarizes the result:

Corollary 4 Let M be the mazimum number of collinear poinis in S. T-hercfbm, these points can be found
in O (min {-"{-; log 47, Nz}).

3 Conclusion and Open problems

We have presented an O (min {%2 log -,%, N 2}) time algorithm solving the exact fitting problem for sets of

N of points in the plane. Can we have a better solution? Any improvement to the algorithm computing the
incidences between a set of lines and a set of points will be reflected in the time complexity of our solution.
Hence, an optimal O(z%/3y?/3 + z + y) time solution, in Lemma 2, would reduce the time complexity of
our algorithm to O (%’;)

An another interesting open problem is to extend the exact fitting problem to sets of N vertical line
segments. In this case, we want to find a line intersecting the maximum number of line segments. This
problem can also be solved in O(N?) time by sweeping the dual arrangement with a topological line.
Edelsbrunner and Guibas [EG89] presented it as an application of their topological line sweep algorithm.
Nevertheless, we can formulate the problem as we did for sets of points and ask to find a line intersecting
at least M line segments, for a given M, in o(N?) time, when M is more than a constant.

References

[Aga90] P.K. Agarwal. Partitioning arrangements of lines II: applications. Disc. Comp. Geom., 5:533-
573, 1990.

[BB88] G. Brassard and P. Bratley. Algorithmics: Theory and Practice. Prentice-Hall, Englewood
Cliffs, NJ, 1988.

[Bro80] K.Q. Brown. Geometric transforms for fast geometric algorithms. PhD thesis, Carnegic-Mellon
University, Pittsburg, PA, 1980.

[CEG*90] K.L. Clarkson, H. Edelsbrunner, L.J. Guibas, M. Sharir, and E. Welzl. Combinatorial complex-
ity bounds for arrangements of curves and spheres. Disc. Comp. Geom., 5:99-160, 1990.

[Ede88] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1988.

[EG89] H. Edelsbrunner and L.J. Guibas. Topologically sweeping an arrangement. J. Comp. Syst. Sc.,
38:165-194, 1989.

[HIIRY] M.E. Houle, H. Imai, K. Imai, J.-M. Robert and P. Yamamoto. Orthogonal weighted linear L,
and Lo, approximation and applications. Submitted to Disc. Appl. Math..

[Mat90] J. MatouSek. Cutting hyperplane arrangements. In Proc. of the 6th Annual ACM Symp. on
Comp. Geom., pages 1-9, 1990.

[MG82] J. Misra and D. Gries. Finding repeated elements. Sc. Comp. Prog., 2:143-152, 1982.

[STI83] E. Szemerédi and W.T. Trotter Jr. Extremal problems in discrete geometry. Combinatorica,
3:381-392, 1983.

