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Introduction

Most. geometric algorithms assume that perfect
“real® arithmetic is available. When these algo-
rithms are implemented they often fail because this
assumption is not borne out; that is, these algo-
rithms are not robust. 'This failure occurs because
either the input or the intermediate calculations are
imprecise, leading to inconsistent decisions by the
algorithm,

This paper presents a framework for reasoning
about robust geometric algorithms which operate
on polygons. Robustness is formally defined and
a data structure called an approzimate polygon is
introduced and used to reason about polygons con-
structed of edges whose positions are uncertain.

A robust algorithm for point location in an ap-
proximate polygon is described. The interesting
aspect of this algorithm is that in addition to the
polygon’s position being uncertain, the point’s po-
sition in the plane does not have to be known;
only the point’s signature is important (that is, its
left/right relations to the edges of the polygon).
"The point location algorithin has immediate prac-
tical application to solid modeling, particularly in
the robust intersection of polyhedra.

An approximate polygon could, by shifting its
edges back and forth within their error bounds, in-
duce a large nunber of different. line arrangements.
In cach of these arrangements some points with a
given signature o may or may not appear, and if
they appear, they may be to the interior or to the
exterior of the polygon which induces the arrange-
ment.  An interesting uniquencss theorem is pre-
sented which states that in all such line arrange-
ments, the points with signature « in cach arrange-
ment are always to the same side of the polygon
which induces that arrangement.

Background

The theory of approximate polygons is based upon
the “representation and model” approach of Hoff-
mann, Hopcroft, and Karasick [3]. In this approach
the algorithm operates on a computer representa-
tion, but presents output as though it were operat-
ing on some mathematical model corresponding to
the representation.

An approximate polygon is a computer repre-
sentalion of some real, mathematical polygon, the
model. The model is rarely explicitly constructed
by the algorithmi. An approximate polygon Prep
can be thought of as a set of constraints on the
topology and position of the implicit model poly-
gon. Any real polygon P satislying these con-
straints is considerced a model for Prep.

Under the representation and model approach,
the definition of robustness is very close to that of
Fortune [2]. Consider a geometric problem 7 as
a function from an input space consisting of mod-
els to an output space, P : T — ), and consider
an algorithm A as function from a different input
space consisting of representations to the same out-
put space, A : R — . Given a representation
Zrep, the set of its models is denoted MODELS(Zr¢p).
This leads to a definition of robustness:

An algorithm A for a problem P is robust if

Vzrep €R, 32 € MODELS(Zrep)

such that A(z,.p) = P(z).

Note that we can pick an arbitrary 2 €
MODELS(Zy¢p). It could be that there are two mod-
els 21 and 22 such that P(2') # P(22). In this case
the algorithm could choose to output either P(al)
or P(x?) and would still he considered to be robust.
"This leads to a definition of consistency:
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A problem P and a representation R are
constistent if

Vz.p €ER, V' 22 € MODELS(Zcp),

P(z!) = P(2?).

Definitions

An approximate polygon closely mirrors the ap-
pearance of a real polygon, as shown in Figure 1.
The approximate polygon consists of an ordered list
of bands corresponding to the edges of the model.
The position of the bands in the plane constrains
the line equations of the model. A formal definition
of approximate polygons is given in the full paper.

Figure 1: An Approximate Polygon

Each edge of an approximate polygon lies in a
region B; called a band, as shown in Figure 2. The
edge must lie on a line which passes through the
ends of the band; that is the line must lie com-
pletely within the shaded region of Figure 2.

It will be useful later on to talk about the span
of a band. This is the set of points swept out by all
lines which fit within the band. The left and right
of a band are the set of those points to the left and
right of the span. By convention, the interior of the
approximate polygon is to the right of the band. In
Figure 2 the shaded region is SPAN(B;) and to its
left and right are LEFT(B;) and RIGHT(B;). For a
band B;, define the set of lines in the shaded region
of Figure 2 as LINES(B;).

SPAN(B;) = {z|3¢€ LINES(B;), {(z) = 0}
RIGHT(B;) = {z|V{€ LINES(B;), {(z) < 0}
LEFT(B;) = {z|V{€LINES(B;), f(z) > 0}

LEFT( ;)

RIGHT( B,)

Figure 2: 'The sPaN of a Band

Robust Peoint Location in Ap-
proximate Polygons

The point location problem would be simple if the
cxact location of the point were given. However, in
most practical applications the point’s loeation is
known only to be within some region of uncertainty.
In particularly ill-conditioned situations this region
of uncertainty can be as large as the pelygon itsell.

Some practical applications (geometric modelers,
for example) can, from other information, logically
deduce the LEFT/RIGHT status of the point with
respect to each edge of the pelygen. Call this
/R sequence the signature. If the polygen’s lo-
cation is knewn exactly, then i the indueed Ene
arrangement a cell decomposition can easily deter-
mine whether all points with a given signature lie
inside or outside the polygon. It is a different mat-
ter, however, wheu there is uncertainty in the poly-
gon’s location. I uncertainty is modeled with an
approximate polygon then the following guestions
must be answered:

Question 1 (Robustness)  Given an
approximate polygon Py, and a signature
a € (Lr)*, does Py, have a model P in
which the induced line arrangement con-
tains a cell with signature o, and is the

cell INSIDE or ouTsine the model P?

Question 2 (Consistency)  Consider
that an approximate polygon can have
two models, P! and P2, which induce two
different line arrangments. These two ar-
rangements each contain a cell with sig-
nature « (call them €' and €2). Then is
it possible that C'! is INsIDE P! and (2 is
ouUTSIDE P??

If the answer to Question 2 were aflirmative then
the signature «v and the approximate polygon I,



would not be sufficient information to determine
point location, and the problem would not be con-
sistent.  ‘The Uniqueness Theorem which is pre-
sented later proves that this is not the case.

Some final definitions

A signalure or(v) is astring in (L|R)*. The signature
denotes the relation of the point v to cach edge e;
of the polygon P. The iy, element of «(v) is the
relation of the point v to edge ¢; of the polygon P.

Refer to Figure 2 for the following definitions. A
half-region is similar to a hall-space, except that
it_has a polygonal boundary. The following half-
regions Ity and L consist of those points which, in
al least one model P, are cither ON ¢; or to the
RIGHT or LEFT of ¢;, respectively, in that model.
Given some a;(v), the half-region I; is that region
in whose interior v must lie if it is to have ai(v)
as the ith
of the cell ¢, consists of those points which have
signature « in at lcast one model.

R; = SPAN(DB;) U RIGHT(3;)
L; = SPAN(D3;) U LEFT(B;)

R; ifﬂ,‘ =R
i = { L; ifa; =1L

n
Co= [ 11;
i=1
The next two lemmas will be used to construct
the point location algorithm. The first lemma
shows that for each point in €, there exists some
model in which the point has signature o the sec-
ond lemma shows how to determine whether the
point is INSIDE or oUTSIDE that model.

Lemma 1 (Model Existence)

Given an approrimale polygon P.ep and a signa-
ture «v, construct C, as described above. Then for
cach point v on the interior of Cy, there ezists some
model P € MODELS(Pyep) in which v has signature
a.

Proof Since v € C,, for each i, v € H; and there
is some edge e; in the band B; which has v to the
side specified by «;. These edges join to form a
model polygon P in which v has signature a. O

Lemma 2 (Point Location) Given an approz-
imale  polygon  P,.,, « model polygon P €
MODELS(Pr.p), and a point v which has a signature
a with respeet to P, the following are true:

component of its signature. The interior
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1. If v is strictly to the interior of P, (that
is, il does not lie on any band B;) then a,
v INSIDE P.

2. If v is strictly to the ezxterior of Prep then
v OUTSIDE P.

3. Ifv € B;, but v € B3, then v INSIDE P iff
a; = R.

4- If ve BiN By and the i/i+ 1 corner is con-
vex, then v INSIDE P iff @; = R and a;j;; = R.

5. Ifv e BiNBiyy and the i/i+1 corner is reflex,
then v INSIDE P iff o; = R or iy = R.

Proof In Figure 3 the cases 1 through 5 are
demonstrated by the points z; through z5. O

.\
[ ".--.-I ........... - \."'-__ .X
x4 . ;;-« s s
| L]

Figure 3: Cases for the Point Location Lemma

Given the Model Existence Leinma and the Point
Location Lemma, a point location algorithm can
be developed. This algorithm will construct the re-
gion Cy, pick a point from its interior, and apply
the rules of the Point Location Lemma to deter-
mine whether the point is INSIDE or OUTSIDE the
model in which it has signature a. The following
Uniqueness Theorem shows that if one such point
is INSIDE its model polygon then all such points are
INSIDE their respective model polygons (similarly
for oUTSIDE).

~ Theorem 1 (Uniqueness) Given an approzi-

mate polygon P.., and a signature a, if for some
model polygon in MODELS(Pr.p) there is a point
with signature a which is INSIDE the polygon, then,
Jor every model polygon, all points which have sig-
nalure o with respect to that polygon are INSIDE
that polygon (similarly for OUTSIDE).

The Uniqueness Theorem is the most interesting
aspect of the point location problem. The proof is
quite involved and is given in the full paper.
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Point Location Algorithm

The Model Existence Lemma, Point Location
Lemma, and Uniqueness Theorem combine to form
the point location algorithm shown in Figure 4.
Note that the algorithm is quite simple and never
actually constructs the model polygon.

1. Compute C,,.

2. If C4 = 0 then no model of P,, induces
a cell with signature a.

w

. Pick a point w on the interior of C,.

P

Apply the Point Location Lemma to de-
termine whether w is INSIDE or OUTSIDE
of the models in which it has signature
a.

Figure 4: Point Location Algorithm

Lemma 3 (Robustness) The point location al-
gorithm is robust.

Proof This follows directly from the Model Ex-
istence Lemma and the Point Location Lemma. O

Lemma 4 (Consistency) The approzimate point
location problem is consistent.

Proof This follows directly rom the Uniqueness
Theorem. O

Lemma 5 (Complexity) The point location al-
gorithm has time complexily O(n?).

Proof Step 1 of the algorithm finds C, by con-
structing in O(n?) time the arrangement of the 3n
lines defining the half-regions H;. The other steps
take constant time. O

Summary

‘Most geometric algorithms are not robust; they fail
due to inexact input or with inexact intermediate
computations. This paper has introduced (a) for-
mal definitions of robustness and consistency, and
(b) the notion of an approzimate polygon, along
with several of its properties. With these, one can
formally develop robust and consistent algorithms
that deal with inexact polygons.

One such algorithm for point location in an ap-
proximate polygon has been presented. The algo-
rithm is particularly suited for practical application
in a solid modeler because it assunies uncertainty
in both the polygon position and the point posi-
tion. The point location algorithm has been proved
robust, and the point location problem has been
shown to be consistent.
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