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Abstract

The general “stabbing” or “transversal” question in n-space asks whether or not a flat of dimension
k can simultaneously intersect each of m figures. A search procedure finds whether or not an intersect
exists in O((dy/mn/e + 2)™"(p(mn) + Q)) steps, where ¢ is the distance from the “best solution” to
the figures in question, d is the diameter of the largest figure, Q is the time to test membership inside
every figure, and p is a small polynomial. Though not very efficient, particularly for the understood
cases of k = 0, 1, n-1, or n, no other general method is known in the literature. A variation of this
procedure, implemented on a Cray I, was used to solve a related statistics problem to within reasonably
tight bounds.

1 Introduction

Given a set F of figures f1,...,fm in R™, a k-transversal or k-stabber of F is a flat of dimension k& which
intersects every element of F. Finding a k-transversal of F, or that none exists, is a significant problem in
computational geometry. A related statistics problem is finding the closest k-flat to a set of points, under
a cumulative distance measure. A related linear algebra problem is finding the closest matrix of rank< k
under some metric.

Previous results concentrate on the cases k = 1or k = (n—1) (1] [2] [4] [6] [9], using constructions familiar
to the theory of computational geometry, such as convex-hulls, locuses, linear-programming, or Helly-type
theorems (3], and do not appear to extend to intermediate values of k. This work is concerned with arbitrary
k-transversals, and draws instead from the theory of linear algebra: the problem is reduced to principle
component analysis (7], which uses the singular-value decomposition [5] to find low-rank matrices within a
neighborhood.

A naive approach is to reduce each f; into a finite set of gridpoints g;, pick a gridpoint from each Jis
then see if the set of chosen points defines a k-flat. If repeating this process does not eventually produce
a transversal, either none exists or no transversal intersects all m grids. The fundamental question is what
information does a non-solution provide? Sections 2 and 3 show an important structure to the problem,
adapting the naive approach to make use of non-solutions in an exhaustive search procedure described in
section 4. An implementation is described in section 6.

2 Figures in R® and R™*™
The space of n x m real matrices is Euclidean, partially ordered under
A<B |iff A,’j SB.'j Vi, j

and distanced under the Frobenius metric

Lr(4,B) = \/2 (Aij = By})?

5,
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Given a set F of figures in R™, let F be the set of n x m matrices M such that M ; corresponds to a point
in f;. F defines a figure in R"*™.

If a matrix M has rank< k, the columns of M span a flat of dimension < k in R"™ which also intersects
the origin. Therefore, if F contains a matrix M of rank< k, M ; is a point in f; and these points all lie in a
common k-flat. This common k-flat is a k-transversal of F' through the origin.

Sections 3 & 4 explain how to exhaustively search F for matrices of rank< k, in such a way that we
eliminate neighborhoods devoid of rank< k matrices. Section 5 lifts the restriction that the k-flat intersect
the origin, to find general transversals.

3 Principle component analysis

A statistical method called principle component analysis allows us to find the closest rank< k matrix under
LF to a given matrix A. For positive diagonal matrices we have a simple solution:

Lemma:
Given a positive diagonal matrix A, let A be a matrix of rank < k& minimizing L (A, A). Aii = Aqi
for the k elements of largest magnitude in A, and Aij = 0 everywhere else. (There may be several
such A if elements of A are repeated).

Proof:

Start with some rank< k matrix A minimizing Lp(A,A). This matrix A can be factored as
A= LoxkRixm, where the columns of L are orthonormal. Under column operations L generates
a space containing A; the closest matrix in this space to A is the projection of A onto this space,
o)
A=LLTA

and the squared distance between them can be expressed as

D (i - Ay)? = D (Aij = LLTAy;)? = tr((A = LLTA)T(A — LLTA))

iJj iJ

=tr(ATA - 2ATLLTA + ATLLTLLTA) = tr(ATA) — tr(ATLLTA)

To minimize this we need only maximize tr(ATLLTA). We will argue by monotonicity that L
will not want to spread the mass of A off of the diagonal. Now

tr(ATLLTA) =3 3 LhAL =Y ALY L% = 3 A%k
R § j i
where h; = 3~, L?] The h; are the diagonal elements of LLT. Now
Z;,,. =tr(LLT) = tr(LTL) = tr(lixi) = k

since the columns of L are orthonormal. h; > 0 by definition. If any diagonal element in LLT
were greater than one, it would have to increase in (LLT)(LLT) since it is squared and summed
with other squares. But L(LTL)LT = LLT,so h; < 1.

Now 0 < h; <1, 3" h; = k, and A;; > 0; the monotonicity property
Ai® > Aj;7 = (he+ h)Ai? > heAil® + hiAj;?

implies that the sum
> ALk = tr(ATLLTA)
i

must maximize with h; = 1 for the k largest A%, and h; = 0 otherwise. The solution is for LLT to
contain 1’s in all diagonal positions corresponding to the k largest A;;%, and 0’s everywhere else;
the product LLTA = A is the matrix A with the (n — k) elements of A; of smallest magnitude
set to zero.
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This generalizes to arbitrary real matrices as follows:
PCA Theorem:

Given a matrix A, the expression

minLp(A,A) A hasrank <k
A

has value (/\',':,,_1 +...42n%)? where A are the singular-values of 4 in order Ay > A3 > ... > A, >0.

Proof:

Under the singular-value decomposition theorem [5]
A=U0TAv

where U and V are unitary matrices, and A is a diagonal matrix with elements A;; = A 20
ordered nonincreasing in i. Also

AAT = (UAVTYUAVT)T = yA2yT

so UT is the matrix of orthonormal eigenvectors of AAT and AAT is the diagonal matrix of the
corresponding eigenvalues.

The Frobenius metric Lg is preserved under unitary transformations, so
Lr(A,A) = Lp(UTAV,UTAV) = Lp(A,A)

where A is a closest rank< k matrix to A under Lp. But by the Lemma, a closest rank< k matrix
A is found by zeroing the (n — k) smallest diagonal elements from A, so

Lr(A A = A2 ) + oo+ A2

a
Corollary:
Some rank< k matrix A minimizing the expression
min Lg(A, A)
A
has the form UUT A, where the columns of U are the eigenvectors corresponding to the k largest
cigenvalues of AAT.
Proof:
Continuing the proof of the PCA Theorem, A = UAVT is a closest rank< k matrix to A.
Substituting, R ) i
A=UAVT = pgAvT
where U is produced by zeroing the last (n — k) columns of U. Now
UAVT = 0UuTAvvT = 0UTA
and UUT = UUT.
a
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The critical observation: a given matrix A is the center of a ball of radius min; Lr(A, fi); a rank< k

matrix of the form A = UUT A lies on the surface of this ball, and no rank< k matriz lies in its interior. (In
fact, since rank is nonincreasing as we scale a matrix, no rank< k matrix lies inside the cone extending the
ball thru the origin.). The corollary gives us a way of finding rank< k matrices within a given neighborhood,
and the theorem gives us a way of discarding neighborhoods as containing no rank< k matrices. The next
section devises a way to systematically search the volume of a figure F for rank< k matrices.
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4 Searching for a transversal

To solve the transversal problem for F, then, we must either find a rank< k matrix inside F or show none
exists by completely covering the volume of F with “empty” balls. The running time can be bounded in
terms of ¢, defined as follows:

e For rank< k matrix M € -F—, let € be the minimal distance from M to the surface of F, maximized
across all such M.

e If no rank< k matrix lies within 7', let € be the minimal distance from the surface of F to any rank< &
matrix M € R**™.

The transversal of F' must intersect points inside the figures, rather than on the surface. Otherwise ¢ = 0
and the procedure may not terminate. Our procedure is useless for figures of 0-volume in R".
A quadrature algorithm operates as follows:

1. Start with € = d, the diameter of the largest figure.

2. An axis-parallel square grid contains F; ¢ is the diameter of each square, ¢//mmn is the edge-length of
each square, and there are (dy/mn/é + 1)™" gridpoints.

3. For each gridpoint z, ignore it unless € F, in which case proceed to step 4.
4. Find a closest rank< k matrix z to z. If z € .17, this is a solution and we are done.
5. If Lp(z,2) < €, halve ¢ and return to step 2.

This completes by the time ¢ < ¢:

e If rank< k matrices lie within F, they must lie closer to some interior gridpoint than does any rank< &
matrix outside F, and hence be identified in step 4.

e Otherwise, the closest rank< k matrix to F is farther away from any gridpoint of ' than is the surface
of F, and is therefore known to lie outside of F.

It requires at most log,(d/¢) major iterations. Steps 3 & 4 take < (dy/mn/é + 1)™" singular-value decompo-
sitions (p(mn) € O(max(m, n)?) operations) and membership tests (call this time Q). The total number of
steps is then O((dy/mn/e + 2)™"(p(mn) + Q)). Section 6 gives some refinements which make the procedure
more practical.

5 Transversals ignoring the origin

Here we reduce the problem of general transversal to transversal-thru-origin, by adjusting the figures F and
dimension n. Addmg a new coordinate Z,4), = 1 to each point £ embeds R™ as an axis-parallel hypcrplane
in R™*1. Call F the set of (n + 1) x m matrices corresponding to F in R**!; each matrix M’ € F has the

form
[
[l]lxm
where M € F.

Let X be a (k + 1)-flat thru the origin which intersects every figure in F in R**! and X’ be a k-flat in
R™ which intersects every figure in F in R", not necessarily thru the origin. In R*+! they are equivalent:

e X' is the intersection of .X and the hyperplane z,,,; = 1.

e X is the closure of X’ under addition and scaling of points.
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Although the problems of general transversal and transversal-thru-origin now appear equivalent, ¢ = 0 for
v . . . . . . . -

the embedded figures in B**! if a solution exists. Further transformation is necessary: for each Y/ € F ,

N < . s P

construct Y .\ such that

oyt 1
)ijl"‘ i(j+l)_}i1
This transforms ¥ into ' C Rpx(m=1) Subtracting the first column of Y’ from the remaining columns

. . . . . . — .
renders Y lincarly independent of the remainder. The task is now to determine whether F contains a
rank< & matrix M", and
/

is the rank< (k + 1) matrix defining X. The whole transformation is equivalent to multiplying R**™ on the
left by an mn x (1n — 1) matrix, so the general shapes of the figures F are preserved.

A/[” ]
[Ollx(m—l)

6 An implementation

The actual complexity of the problem has much to do with the nature and representation of the figures F.
Il the figures are readily decomposable, the “membership tests” are irrelevant: rather, the interior points are
simply selected and processed. This is complicated by the transformation in section 5, which may not be
casy to perform under certain representations.

The motivation for solving this problem was to solve principle component analysis under the Lo, metric
[10] [L1]. Given /A we want the rank< £ matrix X minimizing max;;j |A;; — X,;|, equivalent to finding the
minimal L,-distance d from any k-flat through the origin to a set of points in R”". Geometrically it translates
to finding a rank< k matrix X such that

A - [d,lnxm S X S A+ [d]nxm

for minimal d. The columns of A represent the points, and X is the “best” rank< k approximation of A
under L.,. For fixed d, the above expression defines F to be an axis-parallel square hyperrectangle centered
at A.

To minimize d, a variation of our search procedure is used: fill the region around A4 with “empty”
spheres, to find the largest “empty” F. Dividing F into a 2™"_element grid is computationally infeasible;
the procedure in section 4 must be traded for something practical. A feasible search has to eliminate as
much “empty” volume as possible from F in each step, while compactly representing the search space. Three
heuristics are used:

¢ Upperbounding d limits the size of the F to be searched. An initial upper bound comes from finding the
closest rank< k matrix to A under Lp; this can be improved with a Monte-Carlo procedure: randomly
select a matrix W inside F, and find its closest rank< k matrix W. W factors into YoaxkZkxm, and
applying linear programming to Y and Z in alternation brings Y Z closer to A under L.

e The balls of section 3 cover a limited volume, since their radii are determined by the rank< k matrices
within the neighborhood. Scaling the space converts these balls into ellipsoids, which can be contorted
to cover more volume.

For a given box B, let ¢ be its center and ! be the length of its diagonal. Let r be the radius of the
largest “empty” ball centered at c. For each of the (n + m) dimensions, a scaling factor is chosen to
maximize r/l. This constructs an ellipsoid which absorbs more of B’s volume. If 2r > [ the ellipsoid
contains B, so B can be discarded as containing no solutions.

e If B cannot be discarded, it is partitioned to eliminate much of the volume while generating few new
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boxes. The box is hierarchically decomposed, as shown in the following sketches:

Al
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4

One subproblem is produced at each face where the outer and inner boxes do not meet. The inner
box must be contained within the ellipsoid, but there are many ways it can be drawn. The inner box
is made to meet the outer box along each dimension where the outer box is short in proportion to
the length of the ellipsoid. This keeps the eliminated volume of the inner box large, while causing the
boxes to meet along most dimensions.

The search procedure begins with an upper bound on d, defining the first box B = [A—[d},.xm, A+[d}nxm]-
An ellipsoid is drawn inside B; if B contains a solution the upper bound d is reduced, and the box is re-
processed. Otherwise B is partitioned into subproblems. The box closest to A is processed each time; its
minimal Lo, distance to A is a lowerbound on d. The upper and lower bounds on d ¢onverge as the search
proceeds.

The subproblems, always axis-parallel hyperrectangles, are represented as pairs of upper and lower cor-
ners. Rather than using a 20 x 43 matrix to represent each corner point, each point is represented as an
“edit” to another point, along one dimension. An upper- or lower-corner of a box is an edit to the upper- or
lower-corner of the box it was cut from. The order of the edits is shown by the arrows in the above sketches.
The space required is 2mn words to represent the first box, plus 4 words to represent each subsequent box
that is not discarded.

Figures 1 & 2 give upper and lower bounds on the principle component analysis problem, for a 10 x 45
matrix and a 20 x 43 matrix. The matrices and the purpose of the analysis are described in [10], and details
of the procedures are given in [11]. The bounds appear reasonably tight on this scale; each took several
hours to compute on a Cray-I using Eispack routines to perform the decompositions.

7 Areas for future research

Poljak & Rohn have shown that the problem of finding a singular matrix within a box is N'P-complete,
equivalent to finding a hyperplane transversal for hyperrectangles [8]. Rohn’s solution [12] to this problem

has similar complexity to the linear-programming approach [4], and does not obviously extend to arbitrary
k.
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Better exponential algorithms should come from an understanding of the structure of R"*™_ The subset
of rank <2 & matrices has interesting properties, of which only the most rudimentary have been used. Such
an-algorithn may be useful for transversal problems under restricted n. For principle component analysis
problems n will tend to be large, but producing bounds which converge at a reasonable rate may be sufficient.
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Figure 1: principle component analysis of 10x45 matrix

Figure 2: principle component analysis of 20x43 matrix
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