228

Point Location in Zones of k-Flats in Arrangements*

(extended abstract)

Mark de Berg

1 Introduction

The subdivision of d-space into connected pieces
— usually called faces — of various dimension,
induced by a set H of hyperplanes, is called the
arrangement A(H) of H. This concept was intro-
duced to computational geometry by Edelsbrunner,
O’Rourke and Seidel [6] (see also [5]). They showed
how to construct an arrangement optimally, and
proved the so-called zone theorem, a combinatorial
bound on the maximal complexity of the zone of a
hyperplane. The zone of a hyperplane h consists of
all faces of cells in A(H) that are supported by h.
See Figure 1 for an example in 2-space. The zone
of the line h consists of all bold-face segments and
vertices, together with the shaded cells. Zones are
important in several contexts, as the efficiency of
some algorithms depends on the size of zones. In
[6}, the bound on the complexity of the zone of a
hyperplane guarantees optimal construction time
of arrangements in d-space. In [2], a bound on
the complexity of the vertical decomposition of the
zone of a plane in 3-space is used to improve range
searching in some cases. As a third application,
observe that the zone of a hyperplane A defines
exactly the region that is visible from h, where
the other hyperplanes are the obstacles. There-
fore, zones are suitable for solvmg some visibility
problems.

We generalize the notion ‘zone of a hyperplane’ to
‘zone of a k-flat’, where a k-flat is defined to be the

*This research was supported by the ESPRIT Basic Re-
search Action No. 3075 (project ALCOM). Research of the
first author was also supported by the Dutch Organization
for Scientific Research (N.W.0.). Authors address: Depart-
ment of Computer Science, Utrecht University, P.O. Box
80.089, 3508 TB Utrecht, the Netherlands.

'On leave from the Department of Computer Science of
the University of British Columbia.

Marc van Kreveld

Jack Snoeyink!

Figure 1: The zone of a line & in the plane.

intersection of d — k hyperplanes with linearly in-
dependent normal vectors (0 < k < d — 1), sce
[5]. The zone of a k-flat f with respect to H,
denoted by zone(H, f), is the subarrangement of
A(H) formed by the closure of all cells of A(H)
that are intersected by f. Thus for a point p, the
zone(H,p) is the convex polytope formed by the
intersection of the closed halfspaces that contain p
and are bounded by the hyperplanes of H. For a
hyperplane h, the zone(H, k) is the zone of a hy-
perplane as defined in [5, 6].

The zone(H, P) for a k-polytope P in a k-flat is
defined in an analogous way.

We concentrate on algorithmic aspects of zones of
k-flats rather than the combinatorial side. We ob-
tain an efficient algorithm for point location in the
zone of a k-flat. The data structure has prepro-
cessing time and space O(nl#/2l+¢ 4 nk+¢) (for any
€ > 0), where n is the size of the set I/ of hyper-
planes. Notice that the first termn of the prepro-
cessing is close to the size of one single cell in the
arrangement, and the second term is close to the
number of cells in the k-flat itself. For most k this
is considerably less than the size of the zone itself!

With this structure it is possible to determine in
O(log? n) time if a query point lies in the zone and,
if so, in which cell of the zone it lies. Point location
in a full arrangement or in a convex polytope has
been studied before in [3, 4]. Preprocessing of the
structures take O(n?*<) and O(nld/2J+<) time and
space, respectively. The query time is O(log n).

We also investigate the following problem: Given
a ky-flat fi, a ky-flat fy, and a set H of n hyper-
planes in d-space, determine whether f; and f; can
sce each other with respect to H. In other words,
determine whether there are points P1 € f; and
P2 € f2, such that the segment p;p, does not prop-
erly intersect any hyperplane in /. We obtain an
efficient algorithm for this problem using two tech-
niques of reducing the dimension of the problem,
together with linear programming and the struc-
ture for point location in the zone. The precise
bounds of the algorithm are given in Corollary 1.

In this extended abstract we omit almost all proofs,
and also a number of details of the algorithms.
These can be found in the full version [1].

2 Point location in the zone

We start this section with two easy properties on
zones of k-flats. Then we give structure for point
location in the zone.

Lemma 1 A point q lies in the zone of a k-flat f
wilh respect to H if and only if there is a point pin
[such that the line segment pq does not properly
intersect any hyperplane of H.

Such a point p is called a witness for . The lemma
shows that zones are useful for visibilty problems,
where the obstacles are hyperplanes.

Lemma 2 For the mazimum complezity of the
zone of a k-flat f with respect to a set H of n
hyperplanes in d-space, z(n), we have: zk(n) =
Q(nll4+k)/2]) and zX(n) = O(min(nld/2l+*, nd-1)),

For a set IT of n hyperplanes and a k-flat f in d-
space, the problem of point location in the zone
is defined as follows. Preprocess H and f, such

229

that for any given query point ¢, one can determine
efficiently whether g lies in zone(H, f) and, if so,
in which cell of the zone ¢ lies. If q lies on the
boundary of one or more cells in the zone, then
one of these cells should be found.

We solve these problems using sampling (see e.g.
[2, 3, 4, 7, 8] for other results on sampling). The
algorithm returns a witness if the query point lies in
the zone. The witness will be such that it uniquely
determines a cell of the zone that contains the
query point. Rather than constructing the whole
zone, we construct a tree that uses considerably
less preprocessing time and space.

Let H be a set of hyperplanes and let f be a k-
flat in d-space. Then H denotes the set {k | & =
hn f where h € H}, and A(H) is the arrangement
in f formed by H.

Construct a sample R of size r, where B C T,
and r is a sufficiently large constant. We trian-
gulate the arrangement A(R), for instance with a
bottom-vertex triangulation. The triangulated ar-
rangement A(R) consists of O(r*) simplices, and
R can be constructed deterministically such that
each simplex is intersected by O(n/r) (k — 1)-flats
of H, and, thus, hyperplanes of H [8]. Each sim-
pPlex s partitions H into two subsets H, and H .
the subset H, contains the hyperplanes of H that
properly intersect s, and H! contains the remain-
ing hyperplanes. Notice that R C H]. Let c, be
that cell of A(H}) that contains the interior of the
simplex s. In Figure 2, the upper part of the cell
¢, in 3-space is shown. The planes hy and h, are
in H;, and they contribute to ¢,. The plane hj is
in H,, because it intersects the shaded triangle s
properly.

Lemma 3

(i) If a point q lies in zone(H, f) then there is
a simplez s in the triangulated arrangement
A(R) such that q lies in c,.

(ii) For all simplices s in the triangulated ar-
rangement A(R), such that q € c,, we have:
q € zone(H, f) if and only if q € zone(H,,
fne,).

Lemma 3 gives the recursive property on which
the structure for point location in the zone of f

230

Figure 2: Situation for a 2-flat in 3-space: the poly-
tope ¢, for the shaded triangle.

is based. The structure for zone(H, f) is a tree T
of degree O(r*). Let § be the root of 7. The root
4 has one child 7, for every simplex s in the trian-
gulated arrangement A(R). With v, we store the
simplex s and an associated structure for deciding
whether a point lies in ¢,. The child +, is the root
of a recursively defined tree for zone(H,, f). If the
number of hyperplanes in H is smaller than some
constant, we do not take a sample, but we store
the full arrangement A(H).

This recursive definition does not completely cor-
respond to the recursive property of Lemma 3 (ii):
the subtree rooted at 7, is defined for zone(H,, f)
instead of for zone(H,, fNc,). This is remedied by
filling in witnesses at certain cells in the arrange-
ments stored in the leaves in such a way, that any
query point finds a witness if and only if it lies in
the zone. To this end, impose an arbitrary order
on the children of each node. A query with a point
q should continue in the first child v, for which
the query point lies in the polytope ¢,. To finish
the preprocessing, consider the arrangement A(H),
and for each cell, take one point p in its interior.
Locate p in the arrangement of the leaf where the
search ends, and store p as a witness with the cell
of this arrangement that contains p. (It may take
too much preprocessing time to search with p for
all children for which p € c,.)

A query with a point ¢ is performed as follows.
Start at the root 6. Find the first child v, (with
respect to the chosen order on children) for which
p lies in cy; this is determined by searching in the
associated structure of each child of §. Continue
the search recursively at this child. If ¢ does not

lie in ¢, for any child, then ¢ does not lie in the
zone. If the current node is a leaf, then we locate
g in a cell in the associated arrangement. If there
is a witness stored at the cell, then ¢ lies in the
zone and we return this witness. Otherwise, ¢ does
not lie in the zone. The filling in of witnesses is
correct, because a query point that lies in the zone
will follow the same path down 7 as its witness. A
query point that does not lie in the zone will, at
some point, take a different path down 7 than any
witness.

Theorem 1 For any ¢ > 0, a set I of n hyper-
planes and a k-flat f (or polytope P in a k-flat) in
d-space can be preprocessed in O(nld/2+e 4 pkte)
time and space, such that point location querics in
the zone can be performed in O(log?n) time.

Proof: Testing whether a query point lies in
a convex cell determined by the intersection of n
halfspaces in d-space can be performed in O(logn)
time, after O(nl%/21+¢) preprocessing time and
space (for any € > 0), see [3]. Therefore, the ini-
tial preprocessing S(n) of our structure satisfies the
following recurrence:

S(n) = O(%) - S(n/7) + O(r*) - O(nld/U+e),

This solves to S(n) = O(nld9/21+¢ nk+<) prepro-
cessing for any € > 0, if r is a large enough constant.
Additionally, O(n*) queries, each taking O(log?n)
time (see below) are required to fill in the witnesses
in T.

The query time Q(n) satisfies the following recur-
rence:

Q(n) = Q(n/r) + O(*) - O(log n),

which solves to Q(n) = O(log? n) time. O

3 Visibility among k-flats

Since the zone of a k-flat f defines the region from
which f is visible (without looking through a hy-
perplane), it is natural to use zones to solve visi-
bility problems in arrangements of hyperplanes. In

particular, we consider the problem: given a k-
flat fy and a ky-flat f;, with k; < ks, can f; and fa
sce cach other?

Definition 1 Flats f, and f, are visible (for each
other) with respect to H if and only if there are
poinls qi € fi and q; € f; such that the segment
1192 docs not properly intersect any hyperplane of
If. The points q; and g, are called witnesses.

Before we consider solutions that use our query
structure, we note some useful facts about affine
spaces. Recall that a k-flat is an affine space of
dimension k, which is the translation of a linear
subspace spanned by k linearly independent vec-
tors. The join of flats f; and f, is the affine space
of smallest dimension that contains both flats. The
join of a ky-flat and a ky-flat has dimension at most
ky + ky + 1; it is formed by taking the linear sub-
space spanned by the vectors defining flats f; and
J2, together with a vector from a point in fi to
a point in f;. This set of vectors is translated to
contain a point in f;. If k; and k, are small com-
pared to the dimension d, then one can solve the
visibility problem in the join of f; and f,. On the
other hand, if the summed dimension of the two
flats is greater than d — 1, then they must contain
a parallel vector. It is possible to eliminate this
vector in linear time, thus creating an instance of
the visibility problem for a (ky — 1)-flat, a (k; — 1)-
flat and a set of hyperplanes in (d - 1)-space. In
the full version we prove:

Lemma 4 Given an instance of the visibility prob-
lem with a ky-flat and a ky-flat in d-space, if
ky + k2 + 1 # d then one can find in linear time
an equivalent instance of the visibility problem with
fewer dimensions.

We present three methods for solving the visibil-
ity problem. These methods should be used af-
ter reducing the dimension with the above lemma,
if possible. We first show how to use linear pro-
gramming to determine visibility in O(nk1+1) time
using O(n*1) space. When k; = k, our point loca-
tion structure gives a better solution with O(nki+¢)
space and time. When k; = ky — 1, we obtain a

231

solution — by one more use of sampling — that is
somewhat more efficient.

First the linear programming solution. In d-space,
a point p = (z1,2,...,zq) is contained in a hyper-
plane hif ayz,+- - -+ aqzq = by, where (a1,...,a9)T
is the normal vector of h. By definition, a given k-
flat is the intersection of d—k hyperplanes with lin-
early independent normal vectors. Thus, a point p
in a k-flat satisfies the matrix equation M - p=b,
where the rows of M are the normal vectors of the
hyperplanes defining the k-flat, and b is the column
vector with the corresponding bs’s. We proceed as
follows. Construct the arrangement A(H) in the
ki-flat f1. For a given cell, take a candidate wit-
ness point ¢; from its interior. For each hyperplane
h € H, choose the sign of the hyperplane equation
so that the halfspace {p | (a1,...,aq)-p > b} con-
tains q;; expressed as an n X d matrix inequality,
My -q1 > by. , '

We now wish to find a witness g2 in the ky-flat
f2 that lies in the intersection of these halfspaces.
Thus, we wish to find a feasible solution to M H'p >
by and the matrix equation defining f,, which is
My, - p = byg,. This can be tested in O(n) time by
solving a linear program [9]. Hence, testing visibil-
ity of a k;-flat and a k,-flat can be done by solving
O(n*) linear programs.

Theorem 2 Let H be a set of n hyperplanes in
d-space, let fy be a ki-flat and let f, be a ks-flat.
One can decide in O(nk111) time and O(n*1) space
whether fi and f; see each other with respect to H.

When both flats have the same dimension, our
query structure gives a better solution than the
linear programming approach. We choose a set of
O(n*) candidate witnesses in the one flat (one in
each cell of A(H)), and query with them in the
point location structure for the zone in the other
flat.

Theorem 3 Let H be a set of n hyperplanes, and
K1 and f; two k-flats in d-space. For any € > 0,
one can decide in O(nk+¢) time whether the two
k-flats can see each other with respect to H.

In the full version[1] we also give an algorithm that
is better than the previous ones when ki =ky—1.

232

It makes use of sampling and our point location
structure for the zone. We just state the result
here:

Theorem 4 Let H be a set of n hyperplanes, f;
a ky-flat and fy a ky-flat in d-space, where 1 <
ky £ ky. For any € > 0, one can decide whether

fi and f, can see each other with respect to H in
time O(n¥1/2tk2/2+¢),

To summarize the results of this section, we state:

Corollary 1 For any fized ¢ > 0, one can check
if a ky-flat and a kq-flat can see each other with
respect to a set of n hyperplanes in d dimensions
n time

O(n*i+e) if k1= ko
O(nk1+l/2+c) if k1= ko —1
O(nk1+1) always.

4 Conclusions and open prob-
lems

In this paper we introduced the notion of a zone
of a k-flat in an arrangement of hyperplanes in d-
space and studied two algorithmic aspects. Firstly,
we presented a structure for O(log? n) time point
location in the zone, which in many cases uses less
space than the zone itself. Secondly, an efficient
algorithm was given to determine whether two flats
are visible for each other with respect to a set of
hyperplanes. All algorithms also work for portions
of k-flats, such as k-polytopes.

Some open algorithmic problems that remain are
the optimal construction of the zone itself, and the
improvement of our algorithms. One can also think
of a generalization to arrangements of hyperspheres
or curves.

The main open combinatorial problem is to find
sharp upper and lower bounds on the complexity
of the generalized notion of the zone.

Acknowledgements

The authors thank Otfried Schwarzkopf for helpful

discussions.

References

[1] de Berg, M., M. van Kreveld, and J. Snoeyink,
Point Location in Zones of k-Flats in Arrange-
ments, Techn. Rep., Dept. of Comp. Science,
Utrecht University, 1991.

{2] Chazelle, B., M. Sharir, and E. Welzl, Quasi-
Optimal Upper Bounds for Simplex Range
Searching and New Zone Theorems, Proc. 6th
ACM Symp. on Comp. Geom. (1990), pp. 23-
33.

[3] Clarkson, K.L., New Applications of Random
Sampling in Computational Geometry, Discr.
& Comp. Geom. 2 (1987), pp. 195-222.

[4] Clarkson, K.L., and P.W. Shor, Applications
of Random Sampling in Computational Geom-
etry II, Discr. & Comp. Geom. 4 (1989), pp.
387-422.

[5] Edelsbrunner, H., Algorithms in Combinato-
rial Geometry, Springer-Verlag, 1987.

[6] Edelsbrunner, H., J. O’Rourke, and R. Seidel,
Constructing Arrangements of Lines and Hy-
perplanes with Applications, SIAM J. Com-
put. 15 (1986), pp. 341-363.

[7) Haussler, D., and E. Welzl, ¢-Nets and Sim-
plex Range Queries, Discr. & Comp. Geom. 2
(1987), pp. 127-151.

[8] Matousek, J., Approximations and Optimal
Geometric Divide-and-Conquer, manuscrip,
1990.

[9] Meggido, N., Linear Programming in Linear
Time when the Dimension is Fixed, J. ACM
31 (1984), pp. 114-127.

