39

Computing the Visibility Polygons
of the Endpoints of a Set of Line Segments
in Output Sensitive Time

Mark Keil
Department of Computational Science
University of Saskatchewan
Saskatoon, Canada
keil@cs.usask.ca

Stephen Wismath
Department of Mathematical Sciences
University of Lethbridge
Lethbridge, Alberta, Canada
wismath@hg.uleth.ca

Abstract

Given a set S of n non-intersecting line segments in the
plane, we present an algorithm that computes the 2n vis-
ibility polygons of the endpoints of S, in output sensitive
time. The algorithm relies on the ordered (endpoint) vis-
ibility graph information to traverse the endpoints in a
spiral-like manner using a combination of Jarvis’ March
and depth-first search.

One extension of this result is an efficient (and practi-
cal) algorithm for computing the full visibility graph of
S, in which vertices correspond to segments and a pair
of vertices are joined by an edge if the corresponding line
segments are somewhere visible.

1 Introduction

Problems involving the visibility of objects in a given do-
main have arisen in several areas of computer science, such
as, VLSI design, graphics and motion planning. Visibility
problems involving line segments in the plane are funda-
mental and many problems involving more general ob-
Jects can be reduced (or approximated) by this case. Fre-
quently, it is the underlying structure of the visibilities
that is critical and a graph can be created that condenses
this structural information. In this paper, various prob-
lems involving a set S of n non-intersecting line segments
in general position, in the plane, are considered.

The endpoint visibility graph of S, denoted here
as G.(S), is defined as a graph with 2n vertices corre-
sponding to the endpoints of the line segments of S, and
with an edge set representing the endpoint visibilities (ie.
two endpoints ¢ and r are visible if the line segment join-
ing them intersects no other line segment of S). This
graph arises naturally in motion planning problems and
has been extensively studied [4], [7], [1]. Let E represent
the number of edges in G.(S). It is clear that E is O(n2).
The problem of computing G.(S) can be solved in output
sensitive time, in particular, Ghosh and Mount [4], have
presented an O(E + nlogn) time algorithm.

The visibility polygon from a given point g is denoted
as VPoly(q) and is defined as the (star-shaped) polygon
consisting of the portions of the line segments of S vis-
ible from ¢.! The main contribution of this paper is an
optimal solution to the problem of computing the set of
visibility polygons from the 2n endpoints of S. We present
an output sensitive algorithm that solves the problem in -
O(E) time after the endpoint visibility graph, G.(S) is
computed.

Define two line segments u and v as visible if there
exists a point on u and a point on v such that the line
segment joining them, intersects no other line segment of
S. The full visibility graph of S, denoted as G 1(S), is

1VPoly(g) may be unbounded, in which case we assume there are
“points at infinity” which serve to close the polygon with artificial
sides.

40

G (S)

Figure 1: The visibility graphs of S

a graph whose n vertices correspond to the line segments
of S and whose edges represent the visibility relation. See
figure 1 for examples of the two visibility graphs. As noted
by Ghosh and Mount[4], E, (i.e. the number of edges in
G.(95)), is asymptotically equal to the number of edges
in G;(S) and furthermore, the graph G;(S) can also be
computed in O(E + nlogn) time in the general case. Our
second result is an efficient solution to the problem of com-
puting G (S) which outperforms the algorithm of Ghosh
and Mount for special cases (for example, if the line seg-
ments of S form a simple polygon). Our algorithm relies
on the information provided by the solution to the prob-
lem of computing the visibility polygons of the endpoints
of S.

2 Visibility Polygons

In this section, we present an algorithm for computing the
2n visibility polygons of the endpoints of a set S of n non-
intersecting line segments. As a preprocessing step, we
assume that the ordered endpoint visibility graph G, (S),
has been computed. The endpoint visibility graph infor-
mation provides one half of the information needed to
compute the visibility polygons. For a particular end- '
point ¢, each neighbour r of ¢ in G.(S) is in VPoly(q)
but the following stabbing query must also be answered:
determine the segment of'S first encountered by the ray
extending from r in the direction g7. See Figure 2.

Figure 2: Stabbing Query

If the visibility polygon of r were known, then this stab-
bing query could be answered in O(log d,) time via binary
search. Note that the visibility between ¢ and r also gen-
erates a stabbing query in the opposite direction.

Given G.(S), the visibility polygons can be determined
by solving (exactly) 2E “stabbing queries”. The main
contribution of this section is to order these queries so
that the 2E answers are computed in O(E) time. The
approach combines a modified Jarvis’ March with depth-
first search, to process the endpoints of S in a spiral-like
manner.) :

The main algorithm to compute the 2n visibility poly-
gons is as follows:

e compute G.(S).

o mark all vertices as unvisited.

o v := leftmost endpoint of S.

e ¢ := the convex hull edge of S clockwise from v.

o Spiral (v,e).

The procedure Spiral is a modified depth first search
routine which computes partial visibility polygons as it
visits endpoints and then completes the visibility poly-
gons as it returns from the recursion. Thus, there are two
stages — a winding, and an unwinding stage. During the
winding stage, a previously unvisited endpoint is partially
processed by computing the “outer” portion of its visibil-
ity polygon and then this information is used to answer
the stabbing queries of some of its neighbours, namely the
visible endpoints on the “inside” of the spiral. During the
unwinding step, the remainder (i.e. the “inside”) of each
endpoint’s visibility polygon is.computed and the related
stabbing queries (i.e. to the “outside”) are answered.

Let VPoly(v,a,b) denote the portion of the visibility
polygon counterclockwise about vertex v from edge a to
edge b. (If a = b then the entire visibility polygon is
meant). In order to compute VPoly(v, a, b) efficiently, it is
“critical that all the stabbing queries from v to r have been
answered, for all r visible to v counterclockwise between
a and b. The set of all stabbing queries to v from all ver-
tices w that lie clockwise between a and b will be denoted
as Stabs(v, a,b). The answer to each stabbing query will
be stored on the associated edge in G.(S) to avoid “ta-
ble lookup”. Both VPoly(v, a,b) and Stabs(v, a,b) can be
computed by a simple rotational sweep about v in O(d,)
time, where d, represents the degree of vertex v in G(S).

The spiralling process is complicated slightly by the
presence of “kinks”, i.e. endpoints where the spiral ac-
tually forms a “right turn”. In this case, the outside of
the spiral is strictly less than 180 degrees and an insuffi-
cient number of stabbing answers would be generated if
the (partial) visibility polygon were computed. The algo-
rithm ignores such right turn endpoints by not marking
them as “visited” (and hence visits them again). It will be
shown that right turn endpoints do subsequently become
left turn endpoints (or the recursion terminates at them)
at which time they become marked and processed appro-
priately. The consequence of the existence of these right
turn endpoints is that the spiral wraps around on itself at
such endpoints - however it does not actually cross itself.
See figures 3 and 5 for examples of right turn vertices.

We now present a more formal pseudocode description
of the spiral procedure.

Procedure Spiral (v : vertex; e : edge)
known [v] :=e
e:=e
For each vertex v" adjacent to v (counterclockwise from
e) do

o ¢ = (v,v)
e if mark[v'] = unvisited then

— if e, ¢’ forms a left turn then

41

Figure 3: Right turns in spirals

* mark[v] := visited;
* compute VPoly(v, known[v], ¢’)
* report Stabs(v, known[v], e’)
* known[v] := ¢’
* Spiral (v, ¢’)
else {right turn - do not mark}
* Spiral (v, ¢’)
* return

{ all vertices adjacent to v are marked - unwind}

if e = ¢/ then mark[v] := visited { bottom out case}
compute VPoly(v, known[v], e) {VPoly(v) is now
complete}

report Stabs(v, known[v], e)

end{Spiral}

Note that the array named known is used to keep track
of the portion of the visibility polygon of endpoint v that
has been computed thus far. Using known avoids recom-
puting part of Vpoly(v) in the case of v being a left turn
vertex that when backed into by the recursion during un-
winding, is discovered to have unvisited neighbours. For

42

Figure 4: Backtracking through left turn endpoints

example, the endpoints marked with “*” in figure 4 are
all left turn endpoints which have the above property.

2.1 Correctness

Since G.(S) is a connected graph, every endpoint of S is
ultimately marked as “visited”, because the algorithm is
essentially a modified depth-first search.

The invariant exploited by the algorithm is that when
a left turn endpoint v, is encountered and processed, all
stabbing answers are available (each in constant time)
from the (visible) endpoints on the outside of the spiral
and thus VPoly(v, e, ¢’) is computable in O(d,) time.

The correctness of the algorithm can be established by
showing that the “spiral” does not actually pierce itself,
and hence the notion of “outside” is well-defined. It is
the existence of right turn endpoints on the spiral that
complicates the spiralling process. The spiral-like path
generated by the algorithm is not necessarily simple, it
may self-intersect at a right turn endpoint, at an edge
(between two right turn endpoints), or at a sequence of
edges (between adjacent right turn endpoints). In figure
5 for example, the endpoints u and v are adjacent right
turn endpoints on the spiral.

Lemma:
The spiral-like path generated by the algorithm does
not cross itself.

Figure 5: Two adjacent right turns in spirals

Proof Sketch: (By contradiction) There are two cases
to consider:

Assume the spiral crosses itself at an endpoint v, (refer
to figure 6). Note that v must be a right turn endpoint in
this case.

When the spiral first enters v along an edge e, the algo-
rithm determines the first unvisited visible vertex from v
counterclockwise from e - label this outgoing edge ¢’. If v
is a right turn endpoint, then the spiral must reenter v at
some later stage along an edge e”, however since there are
no unvisited vertices counterclockwise between e and e/,
the outgoing edge associated with e” can not lie in that
region and hence the spiral can not actually cross itself
at v. Note that this outgoing edge may create another
right turn at v, in which case v will be entered yet again,
however the argument is also still applicable.

Assume the spiral crosses itself at an edge as in figure
7. Let the endpoints creating the first such edge crossing
on the spiral be a, b, ¢ and d. When the endpoint a was
processed, endpoint d was not marked as “visited” and
hence there must exist a line segment u blocking the vis-
ibility between a and d (since b was chosen as the next
endpoint on the spiral). Segment u can not block the vis-
ibility between a and b nor the visibility between ¢ and d,
and thus there is an endpoint v inside the triangle defined
by adb, and visible to a. Since this endpoint v was not
visited after a, it must have been previously visited:

Figure 6: Endpoint crossing

p—

Figure 7: Edge crossing

o either v was a right turn endpoint (and hence un-
marked), which contradicts the choice of b as the next
visited endpoint on the spiral after a, or

e v was a left turn vertex, in which case there exists
another edge crossing, earlier in the spiral, contra-
dicting the assumption that (g, b) (c, d) was the first
such crossing.

.

2.2 Analysis

After the preprocessing step of computing the endpoint
visibility graph G.(S), the initializations in the main pro-
gram can be performed in O(E) time.

Before analysing the procedure spiral, there are two
modifications necessary. It is possible that the spiral en-

43

ters a right turn endpoint more than once along a given
edge (see figure 5 for example). If the spiral exitted such
a right turn endpoint by a different edge on each visit,
then it could be argued that each right turn endpoint v,
is not entered more than d, times. However, it is possible
that a chain of consecutive right turn endpoints is created
and the spiral may thus enter and exit some right turn
endpoints entirely along previously used edges. To avoid
this situation, we assume a double-ended queue is created
whenever more than two consecutive right turn endpoints
appear on the spiral. By maintaining this queue, it is pos-
sible to avoid passing through a right turn endpoint more
than once without using a new edge.

The second modification to the procedure also involves
right turn endpoints. since a right turn endpoint v, may
be entered many times before it receives left turn status,
it is important that the associated edge be found quickly
- i.e. we can not afford to perform the same counterclock-
wise scan of visible visited vertices each time the endpoint
is entered. The solution to this problem is to maintain
a copy of the ordered visibility information about v and
to actually delete the edges to visited neighbours as they
are discovered. Thus, when a right turn endpoint is sub-
sequently entered, the next visible unvisited endpoint is
discovered without considering previously rejected edges.

Note that neither of these modifications affects the cor-
rectness of the algorithm; they are used merely to improve
the efficiency. Given the above two modifications to the
Spiral procedure, we now show that the running time is
O(E).

Consider an endpoint v that is discovered to be a
left turn on the spiral during the winding stage. Both
VPoly(v, e, ¢’) and Stabs(v, ¢, ¢’) are easily computed with
a single rotational sweep in O(d,) time. Similarly, when
v is encountered during the unwinding stage, the rest of
the visibility polygon and associated stabbing queries can
be computed in O(d,) time. There is one complication
to this argument. If during the unwinding stage, v is dis-
covered to have further unvisited neighbours, a new wind-
ing stage is initiated (for example at the vertices marked
with “*” in figure 4). In this situation, only a smallslice of
VPoly(v) is computed, namely from known [v] to e’. Thus,
although v may be reentered several times, the {otal work
to compute the visibility polygon of v is 0O(d,).

Given the previous modifications to the Spiral proce-
dure, consider the total time spent over the lifetime of the
procedure at a given right turn endpoint v. The number
of times v is encountered as a right turn endpoint times
the amount of time spent determining the next endpoint
on the spiral is O(d,) in total, since each entry or exit to
v must involve a new edge.

Summing over all endpoints yields the claimed O(E)

44

running time.

3 The Full Visibility Graph

Our original motivation for considering the visibility poly-
gon problem for endpoints was in relation to the compu-
tation of the full visibility graph of a set of line segments.
Recall that in the full visibility graph of S, G;(S), ver-
tices correspond to the line segments of S, and a pair of
vertices are adjacent iff the corresponding line segments
are visible.

Although the algorithm of Ghosh and Mount [4], can
be modified to compute the full visibility graph in optimal
output sensilive time O(E + nlogn), the algorithm is not
practical to implement as it requires sophisticated data
structures (finger trees) to implement.
~ In [8], an O(n?) time and space algorithm was pre-
sented, that relies on a result due to Asano, Asano,
Guibas, Hershberger and Imai, [1] as a preprocessing step
to compute the (ordered) visibility polygon of each end-
point of the line segments in S. However the full visibility
algorithm does not require the full power of the Asano et
al algorithm as only endpoint queries need be answered,
not general queries.

In this section, we present a (practical) output sensitive
algorithm for computing the full visibility graph given the
endpoint visibility graph. By divorcing the two problems
any endpoint visibility routine may be used as a prepro-
cessing step.

This "modular” strategy enables one to take advantage
of algorithms for the endpoint visibility graph problem
that are, for example, dynamic [6], practical [5), or fast in
a restricted domain [3].

We adapt the algorithm of Wismath [8] to compute the
full visibility graph, G;(S), in O(E) time, as follows:

For each endpoint ¢ of each segment u do

e compute the visibility polygon VPoly(g) as in section
2.

e report as visible u and each segment in VPoly(q).

e report the visibilities around ¢ (i.e. the segments of
S that are 180 degrees apart about ¢ in VPoly(gq))
with a rotational sweep technique.

4 Conclusion

The main contribution of this paper is an algorithm that
computes the 2n visibility polygons of the endpoints of a
set of line segments. The algorithm runs in O(E) time,
after the endpoint visibility graph has been computed (in

the general case this preprocessing step .can be performed
in O(E + nlogn) time [4] but can be contained to O(E)
in special cases, for example, if the line segments form a
simple polygon [3]).

One consequence of this result is that the full visibility
graph of S can also be computed in O(E) time, given the
endpoint visibility graph.

Acknowledgement

This work was supported by the Natural Sciences and
Engineering Research Council of Canada.

References

(1] T. Asano, T. Asano, L. Guibas, J. Hershberger, and
H. Imai, Visibility of Disjoint Polygons, Algorith-
mica, 1, No. 1, (1986), 49-64.

[2] B. Chazelle, Triangulating a simple polygon in linear
time, Discrete and Computational Geometry Vol. 6,
No. 5 (1991), 485-524.

(3] J. Hershberger, Finding the visibility graph of a sim-
ple polygon in time proportional to its size, Proceed-
ings of the 3rd Symposium on Computational Geom-
etry, Waterloo, 1987, 11-20.

[4] S. Ghosh, D. Mount, An Output Sensitive Algorithm
for Computing Visibility Graphs, SIAM J. of Com-
puting, Vol. 20, No. 5, (1991), 888-910.

[5] M. Overmars, E. Welzl, New methods for computing
visibility graphs, Proceedings of the 4th Symposium -
on Computational Geometry, Urbana-Champaign,
1988, 164-171.

[6] G. Vegter, Dynamically maintaining the visibility
graph, Workshop on Algorithms and Data Struc-
tures 1991, Ottawa, Springer Verlag Lecture Notes
tn Computer Science, #519, 425-436.

[7] E. Welzl, C;:mstructing the Visibility Graph for n-
Line Segments in O(n?) Time, Information Process-
ing Letters 20 (1985), 167-171.

[8] S. Wismath, Computing the full visibility graph of a
set of line segments, to appear in Information Pro-
cessing Letters.

