An Algorithm for Finding the Weakly
Visible Faces from a Polygon in 3D*

Extended Abstract

Harry Plantinga
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260
planting@cs.pitt.edu

1. Introduction

A polygon is said to be weakly visible from a viewing polygon P in the presence of other
polygons when some part of the front side of that polygon is visible from some point in
P. For applications in computer graphics and virtual reality, it is desirable to determine
the set of faces of a model or scene that are weakly visible from a polygon in a prepro-
cessing phase. For example, a CAD model of a building may be divided into regions
such as rooms, and weak visibility from each region may be computed in advance. The
view from any viewpoint in a region may then be rendered correctly by rendering all of
the polygons that are weakly visible from that region with graphics hardware that per-
forms hidden surface removal. The set of weakly visible faces from a region is the small-
est set of scene faces that results in the correct image under those conditions. This kind
of visibility computation can bring about significant performance increases over render-
ing all of the faces of the model with hidden-surface-removal hardware for interactive
graphics applications such as architectural walkthroughs, in which views must be ren-
dered as quickly as possible and preprocessing time is available.

In this paper I present an algorithm for finding the set of weakly visible faces from a
polygon P in 3-space under perspective projection. This is equivalent to determining the
set of faces at least partially illuminated by a lighted polygon P. The polygon is assumed
to be a one-sided light, so that only faces on one side of P are visible. For a scene with a
total of n vertices among all faces including P, the algorithm has worst-case runtime O(n#
log n). The algorithm works by finding the faces that are weakly visible from some view -
point in P and those that become weakly visible somewhere in P. Extensions are also
discussed to computing weak visibility from non-polygonal regions and from volumes.

Much work has been done on computing visibility from a point in 2-D [for example,
O’Rourke, 1987; Sack and Suri, 1990] or in 3-D, which is closely related to hidden sur-
face removal [see, for example, Foley et al., 1990; Sutherland et al., 1974]. Airey et al.
[1990] compute visibility from a region for the graphics application of architectural walk-
throughs, but the methods given are approximation algorithms: partial shadow computa-
tions and sampling by stabbing. They express the desire that better algorithms be de-
vised. Funkhouser, et al. [1992] precompute visibility information for interactive walk-
throughs, using a stabbing technique to determine which rooms are visible from a given
room. Mulmuley [1991] and Bern et al. [1990] independently compute visibility along a
line segment. Plantinga and Dyer [1990] present an algorithm for computing the view-

* This research supported in part by NSF Grant No. CCR-9007612.

45



46

point space partition for a polyhedral scene, which is a partition of viewpoint space into
maximal regions of viewpoints from which the topology of the image is constant.

2. Weak Visibility Events

Key to this algorithm is the computation of weak visibility events. 1 define a weak
visibility event viewpoint to be a viewpoint v such that there is an object face f, thatis
invisible (weakly visible) from v, but an arbitrarily small change of viewpoint in some
direction causes f, to become weakly visible (invisible). The idea is that a weak visibil-
ity event viewpoint is a viewpoint at which some part of a face of the scene appears or
disappears. The definition follows in spirit the definition of visual event found elsewhere
[e.g. Koenderink and van Doorn, 1979; Plantinga and Dyer, 1990; Plantinga, et al.,
1990], but it differs in that it concerns the weak visibility status of faces rather than
changes in the topology of the image; the events defined in this paper are a proper subset
of those representing a topological change in the image. The “extra” events that occur
under those other definitions correspond to topological changes in the appearance of the
image that are not changes the set of weakly visible faces. In this paper, I will speak of a
face’s being occluded at v and becoming weakly visible upon a small change in view-
point, but the symmetric case is also intended.

A face in a scene only becomes invisible upon a small change in viewpoint when it “turns
away from” the viewer or it becomes occluded by other faces in the scene. Given an
event viewpoint v and a face that becomes occluded at that viewpoint, f, let S ¢ denote
the set of points of f, that appear upon an arbitrarily small change in viewpoint. View-
point v can be an event only if it lies in the plane containing fy or if a line of sight from v
to a point of Sy passes through edges of faces in the scene sufficient to constrain it in
some direction with respect to maintaining the visibility status of f,. This requires that it
pass through two parallel edges or three edges of which no pair is parallel, possibly in-
cluding one or two edges of f,. If only two parallel edges participate in the event, then a
line of sight from v to a different point of Sy can be found that passes through three object
edges [Plantinga and Dyer, 1990]. These edges are said to participate in the event, and f,
is said to be the face occluded at the event viewpoint v. Examples of images of scenes
from viewpoints that are near event viewpoints are shown in Figure 1.

Figure 1. The image from viewpoints near events. Four different examples are shown.



47

Events can be classified as one of three types: horizon events, in which the viewpoint is
in the plane containing the face that becomes invisible, edge-vertex (EV) events, in which
the view point is not in the plane containing the face that becomes invisible and two of the
edges partici pating in the event meet at a vertex, and edge-edge-edge (EEE) events oth-
erwise. Since EV events involve the apparent intersection of a vertex and an edge in the
image, the lines of sight in question lie in the plane containing the vertex and the edge. In
the case of EEE events, the lines of sight pass through three object edges (see Figure 2).

Figure 2. The line of sight through point P on E; that passes through E> and E3.

Not all sets of three image edges result in an event, but all events require the apparent in-
tersection of three image edges, that is, the intersection of the projection of three scene
edges in the viewing plane. Arrangements of three scene edges that may result in an
event can be found by examining the cases that result from different arrangements of
faces containing the edges, whether two of the edges meet at a vertex, and whether the
occluded face contains an edge or a vertex participating in the event.

In Figure 2, the dotted line is the line of sight that passes through the three edges shown.
Note that this line of sight is the intersection of the two shaded planes: one containing a
point x of E; and all of E, and the other containing x and E3. If edge E; is given by p;
+ s aj, E2 by p + 52 a3, and E3 by p3 + 53 a3, then forx=p; + s a; on E;, direction of
the line of sight is given by

d=[(p1 + sa; - p2) x a2] x [(p1 + sa; — p3) x a3] 0y

Notice that d is a quadratic function of 5. Thus, the locus of event viewpoints for an EEE
event is not a plane but a warped surface. I will define potential event points as points
that are on lines of sight that start at a point v of x and intersect the edges participating in
the event and the occluded face f,. Potential event points are event points when the line
of sight between v and f, is not obstructed by any other face.

3. Finding Weakly Visible Faces

The algorithm for finding the weakly visible faces from P first finds all of the faces visi-
ble from some point in P using a standard object-space hidden-surface removal algorithm
such as that of Mulmuley [1989]. It then finds all of the events in P and adds any faces



48

that become weakly visible at some event in P to the list of weakly visible faces. Any
face that is weakly visible from P must be visible from every point in P or must become
weakly visible at an event in P, so all weakly visible faces are thus found.

The algorithm requires that the locus of potential event points in space for a potential
event be represented. Since these points are viewpoints at which a face becomes weakly
visible in the absence of other polygons, for horizon events the locus of points in space
corresponding to a potential event is a polygonal part of the plane containing the face that
becomes occluded. For EV events, it is a polygonal part of the plane containing the edge
and vertex participating in the event. For EEE events, it is a part of a warped surface
consisting of the points on the lines of sight that start at an event point in P, pass through
the three edges participating in the event, and reach the face that becomes occluded. In
this case, the locus of potential event viewpoints is a part of the warped surface bounded
by line segments: the intersection of the warped surface with P, the intersection with the
face that becomes occluded, and a segment from each of two bounding lines of sight.

Since the surfaces are planar or warped, they can be represented by parametric functions
of the endpoints of line segments constituting the surfaces. Thus, each surface is repre-
sented as the union of the line segments from pj(s) to pa(s) forall 5,0< s < 1. Here,
P1(s) represents the locus of viewpoints in P intersecting the potential event surface and
p2(s) represents corresponding points of fp, (s) that become occluded. For EV events, py
and p» will be linear (or piece-wise linearﬂunctions of s, and for EEE events they will
be quadratic functions of s. The algorithm represents a subset of these lines of sight by
representing an active subrange of the parameter s for an event. (These active subranges
will represent the lines of sight that are not occluded by other faces of the scene.) A sub-
range consists of many non-intersecting intervals of [0,1]. These subranges can be main-
tained in a data structure such as a segment tree [Preparata and Shamos, 1985]. A new
interval may thus be subtracted from the subrange in O(log n) time.

For horizon events, pi(s) is part of the intersection of P with the plane containing the face
that becomes occluded, and py(s) is the set of edges of that face visible from P. For EV
events, the lines of sight in question must intersect P, the vertex and edge participating in
the event, and the face that becomes occluded. pi(s) is the intersection of the lines of
sight that meet these conditions with P, and pa(s) is the intersection of the lines of si ght
that meet these conditions with the face that becomes occluded (see Figure 3).

pi(l) p2(0)

occluded
P1(0) face

p2(1)

Figure 3. Finding p1(s) and p2(s) for EV events.

For EEE events, the lines of sight in question start at a point of P and intersect the three
edges participating in the event. The lines of sight intersecting the three edges are found
using Eq. 1. Initially, all of the lines of sight that pass through edge E; and the lines con-
taining E> and Ej3 (see Figure 2) are represented by Eq. 1 and the parametric equation for
Ej, with 0 <5 < 1. The values of s for which the lines of sight intersect E, and E3 are
then computed using Eq. 1. The “active” values of s are stored in a segment tree. The



surface defined by the active subrange of s, Eq. 1, and the parametric equation for E; de-
fine a warped surface; the intersection of this surface with P is then found. The result is
the potential event surface. Finally, pj(s),0< s <1, is the intersection of this surface

with P, and p2(s) represents the corresponding points of the faces that become occluded.

The algorithm for finding weakly visible faces is as follows. In the algorithm, faces
marked “invisible” are not known to be weakly visible, but faces marked “visible” are
known to be weakly visible. At the end of the algorithm, all faces still marked “invisible”
are known not to be weakly visible from P.

1. Since faces are only visible from one side of P, intersect all faces with the
halfspace on the correct side of P. This does not increase the number of vertices
of the scene.

2. Mark all remaining faces “invisible.”

3. Select a point of P (e.g. a vertex). Perform hidden-surface removal from that
point, assuming a hemispherical field of view. Mark all of the polygons that
appear in the image “visible.”

4. Find all horizon and EV potential event surfaces. For each one,

If the face occluded at that potential event does not contain an edge participat-
ing in the event, find the faces occluded at that event by exhaustive search. If
all of the faces occluded at that event are marked “visible,” skip to the next
potential event surface.

Find the endpoint functions pj(s) and pa(s) for the surface. Represent the ac-
tive subrange of s in a segment tree (initially [0,1]). Find the subrange of s
corresponding to the lines of sight that intersect P.

Subtract from the segment tree the subrange of s corresponding to the intersec-
tion of the surface with every other scene face. For average-case efficiency,
the subtractions should be done in order of decreasing size of scene face.

If any lines of sight remain, mark the polygons occluded at this event
“visible.”

5. Repeat step 4 for all EEE potential events.

A potential event surface is intersected with a polygon by finding the intersection of the
surface with the plane containing the polygon. This will be a series of segments on a line
or a quadratic curve. The line or quadratic curve is then intersected with the polygon;
once the intersection points are found, it is possible to find the intersections of the seg-
ments with the polygon in a manner similar to a merge: traverse the line or curve, seg-
ment by segment, keeping track of whether you are outside or inside the polygon. The
procedure may be accomplished in O(7 + e) time where the potential event surface is di-
vided into r subranges and the polygon has e edges.

4. Time Complexity

Steps 1 and 2 can be completed in O(n) time where n is the number of vertices or edges in
the scene. Step 3 can be completed in O(n2) time using a hidden-surface removal algo-
rithm such as that of McKenna [1987]. In step 4, an operation is done for each horizon
and EV potential event. There are O(n) horizon events since there is at most one per
scene face, and there are O(n2) EV potential events since there is at most one per scene
edge/vertex pair. The number of endpoints for a subrange cannot be larger than the num-

49



50

ber of edges in the scene, so the subrange intersection problem for a face with m vertices
can be completed in time O(m log n). Intersecting the potential event surface with sub-
ranges for all faces thus takes time O(n log n), and completing step 4 takes time O(n3 log
n). The step 5 time requirements are identical except that there are O(n3) EEE potential
events (at most one for every set of three edges of the scene), so the time required to
complete step 5 is O(n* log n). Thus, the whole algorithm requires time O(n4 log n).

For realistic scenes, the runtime is likely to be much less that the worst case, though still
possibly very high. Some reasons are that for realistic scenes, most EV and EEE poten-
tial events can be eliminated from consideration by intersecting the potential event sur-
face with a single large polygon from the scene, and many tests of potential events will be
obviated because the occluded face was already known to be visible in step 3 or step 4 or
the potential event surface does not intersect P. The worst case occurs only for scenes
that are visually very complex (such as a grid in front of another grid), and it typically oc-
curs for scenes in which only a few faces are visible from any viewpoint in P but most
faces are visible from some viewpoint in P.

The average-case performance of this algorithm may be improved by many techniques,
which generally vary in efficacy according to the specific characteristics of the scene in
question. For example, one technique that would significantly improve average-case per-
formance for scenes with large occluding faces such as walls and floors in a building is to
find the faces that can easily be determined to be invisible from P in a preprocessing
stage. This stage would proceed as follows: for each large face, the shadow region with
respect to P considered as a light source is found. Any other face lying completely in that
shadow is eliminated from consideration.

5. Extensions and Conclusion

An algorithm is presented here for computing the set of weakly visible faces from a poly-
gonin 3D. Itis interesting that the worst-case runtime for this algorithm is so much
worse than that for hidden-surface removal from a point, which can be accomplished in
©(n2) time. An obvious open question is whether the worst-case runtime can be im-
proved. Itis possible to prove that the weak visibility problem from a point in 3-D re-
quires Q(n log n) time by reduction from element uniqueness. In fact, it seems unlikely
that it is possible to improve the worst-case runtime for the weak visibility from a poly-
gon problem to o(n3), because of the existence of 6(#3) event boundaries in any region in
the worst case. However, it may be possible to improve on the O(n# log n) algorithm
given here. Also, an algorithm with good expected-time performance for the kinds of
scenes generally occurring in computer graphics and virtual reality would be highly
desirable.

Finding the set of weakly visible faces from a polygon is an expensive computation. The
problem statement may be relaxed slightly to the following: given a polygon, find a
small superset of the weakly visible faces from that polygon. An efficient algorithm for
that problem would also be useful for computer graphics, especially if it could be done
much more quickly, because the correct scene could be rendered with hidden surface re-
moval hardware. An approach to that problem is presented elsewhere [Plantinga, 1992].

This algorithm may also be used for the weak visibility problem from a planar region R
that is not a polygon. To do so, it must be possible to find and represent the intersection
of R with the surfaces arising in this algorithm. Also, this algorithm can be used to com-
pute weak visibility from a polyhedral volume V. In this case, the faces that are weakly



visible from V are those that intersect V or that are weakly visible from the one of the
faces of V.

References

Airey, J. M., J. H. Rohlf, and F. P. Brooks, Jr., “Towards image realism with interactive
update rates in complex virtual building environments,” Computer Graphics 24(2),
1990, pp. 41-50.

Bern, M., D. Dobkin, D. Eppstein, and R. Grossman, “Visibility with a moving point of
view,” SODA 1990, pp. 107-117.

Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughs, Computer Graphics: Principles
and Practice, 2nd ed., Addison-Wesley, 1990.

Funkhouser, T. A., C. H. Séquin, and S. J. Teller, “Management of large amounts of data
in interactive building walkthroughs,” ACM Symp. on Interactive 3D Graphics,
1”2’ pp' 11‘20.

Koenderink, J. and A. van Doorn, “The internal representation of solid shape with respect
to vision,” Biol. Cybernetics 32, 1979, pp. 211-216.

McKenna, M., “Worst-case optimal hidden surface removal,” ACM Transactions on
Graphics 6, 1987, pp. 19-28.

Mulmuley, K., “An efficient algorithm for hidden surface removal,” Computer Graphics
23 (3), 1989, pp. 379-388.

Mulmuley, K., “Hidden surface removal with respect to a moving view point (Extended
abstract),” Proceedings of the 23rd. Annual Symp. on Theory of Computing, 1991,
pp. 512-522.

O’Rourke, J, Art Gallery Theorems and Algorithms, International Series of Monographs
on Computer Science, Oxford University Press, 1987.

Plantinga, H., and C. R. Dyer, “Visibility, occlusion, and the aspect graph,” International
Journal of Computer Vision 5(2), November 1990, pp. 137-160

Plantinga, H, C. R. Dyer, and W. B. Seales, “Real-time hidden-line elimination for a ro-
tating polyhedral scene using the aspect representation,” Proc. Graphics Interface
‘90, pp. 9-16.

Plantinga, H., “Conservative Visibility Preprocessing for Efficient Walkthroughs of 3D
Scenes,” TR 92-4, Department of Computer Science, University of Pittsburgh,
Pittsburgh, PA 15260.

Preparata, F. P, and M. I Shamos, Computational Geometry, Springer-Verlag, 1985.

Sack and Suri, “An optimal algorithm for detecting weak visibility of a polygon,” IEEE
Transactions on Computers, 1990.

Sutherland, I. E., R. F. Sproull, R. A. Schumacker, “A characterization of ten hidden-sur-
face al gorithms,” ACM Computing Surveys 6(1), 1974, pp. 1-55.

51



