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The Word problem : A geometric approach

Haijo Schipper*

Abstract

In this paper we will give an algorithm which solves
the ”word-problem” for fundamental groups of compact
oriented surfaces. That is given a word - a product of
generators or their inverses — determine whether that
word is in the same equivalence class as identity. Or
in geometrical terms given a surface and its generators
and a curve following the generators, can that curve be
contracted to a point? The algorithm will work in time
O (gn) where g is the number of generators and n the
length of the word.

1 Introduction

In the last few years a new branch of computational ge-
ometry computational topology has developed. It stud-
ies complexity of and algorithms on topological struc-
tures just as computational geometry studies geomet-
rical structures. Topology, sometimes informally called
rubber sheet geometry, is closely related to geometry;
however, it deals more with relations than with realiza-
tions. That is one is i.e more interested in incidence
relations of triangles than in the actual coordinates of
the vertices.

Related work in computational topology can
be found in Mehlhorn and Yap [MeYa 88], Veg-
ter [Ve 89], Vegter and Yap [VeYa 90], Hershberger and
Snoeyink [HeSn 91a, HeSn 91b], and Schipper [Sc 92].
In Snoeyink [Sn 90] a series of topological algorithms
can be found. ‘ o

The problem we will solve is the following : given

.- a group G, with generators al,bl,az,bz,...,_ag,bg
and a set of rglations R = {ai@; = 1,b;b; =
l,alblﬁlblagbzazbg---agbgﬁgbg}(i = 1,...,g) (l-l'.' is

the inverse of a;) and a word W which is a prod-
uct of n generators or their inverses. Now we want
to determine whether W equals 1 ( in G) using a fi-
nite number of steps. The problem was solved by
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Dehn [De 12a, De 12b, Gr 60]. The problem can be
solved in an algebraic process, Dehn’s first solution, but
also in a topological way. In this case G is the fun-
damental group of a surface S. The generators of the
group are the generators of the surface. The word W
corresponds to a curve W, on S along the generators.
Now W equals 1 if and only if W, can be contracted to a
point. ( See Stillwell [St 80]). So we have to determine
whether or not W, is contractable or not. We will use
the following theorem :

Theorem 1.1 A curve ¢ on a 2-manifold M can be
contracted to a point if and only if the lifted curve ¢ in
the universal covering space U ( M) is closed.

and construct a part of the universal covering space to
determine if the lifted curve of W, is closed or not.

The rest of the paper is organized as follows : In
section 2 we introduce the universal covering space and
in section 3 we will show the algorithm.

2 Preliminaries

2.1 The canonical polygon

It is well-known that surfaces can be represented by
simple polygons with labelled directed edges, each la- -
bel occurring twice. See for instance Henle [He 79] and
Stillwell [St 80]. Each pair of edges with the same la-
bels is identified according to the direction of the edges.
Furthermore each simple polygon with labelled directed
edges such that each label occurs twice, represents a
closed surface. See figure 1.

An orientable surface of genus g > 0 is represented
by a k-gon ( £k > 4g). If we have a surface of
genus ¢ > 0 in a polygonal schema we say it is in
normal form if the consecutive edges are labelled :
a,blﬁﬁazbza—gg...a,b,a_,'l:. This polygon is called
the canonical polygon. The canonical polygon of the
sphere is a 2-gon labelled a@. If a surface is represented
by its canonical polygon all the vertices of the polygon
are identified. This fact follows from the identification
of the pairs of edges.
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Given a canonical polygon P4 we can obtain M by
glueing the edges with identical labels - in the correct
direction - together. After doing that the labels of P
give rise to a set of curves on M all intersecting at one
vertex. We will call this set of curves canonical set
of generators. This set of generators corresponds of
course with the generators of the group G.

2.2 The universal covering space

Schwarz discovered in 1882 the universal covering space
using the canonical polygon. The construction of the
universal covering space is as follows : take infinitely
many copies of Pa-and glue them together along the
identified edges. What results is a - topological - regu-
lar tessellation of the plane with 4g-gons. Note that the
4g corners of P, are identified. Since the edges of the
canonical polygon represent a set of canonical genera-
tors of the surface, the labelling of edges around each
vertex in the universal covering space is the same as
the labelling of the generators around the basepoint on
M. See figure 1. Thus starting with a single copy of
P, with its vertices on a circle Cp, there is a topologi-
cally unique way to complete the neighbourhood of each
vertex with copies of Paq. Of course they are not con-
gruent. All other vertices of those copies lie on a larger
circle C;. This process can be repeated ad infinitum.
See figure 2.

The universal covering space of the sphere is the
sphere itself and the universal covering space of a man-
ifold of higher genus is homeomorphic to the plane.

We will denote the universal covering space of a man-
ifold M by U ( M).

Definitions 2.1 We say that a vertez v in the univer-
sal covering space has distance k from the base polygon
if it lies on the circle C;. The distance of an edge from
the base polygon is the minimum of the distances of ils
endpoints. A polygon has distance k from the base poly-
gon if it is incident with a verter at distance k, but not
with a vertez at distance k + 1. Edges of the univer-
sal covering space between vertices of different distances
will be called spokes, edges between vertices at the same
distance of the base polygon will be called arcs. Poly-

gons at distance k incident with 4wo-vertices-at distance -

k — 1 will be called bridges. The fan of a verter v at
distance k consists of the polygons incident with v at
distance k + 1 which are not bridges.

2.3 Lifting paths

Since U (M) is a covering space of M, there is a map —
the so called covering map - ¢ : U (M) — M from the
simplexes of & ( M) onto M with the following proper-
ties : ( see also [St 80, 2.2.1])

1. & preserves incidence relations. That is if z and y
are incident in & ( M) then ¢ ( z) and ¢ (y) are
incident in M.

2. For each oriented edge e in & ( M) we have
(6(e))~"=¢(e).

3. For each vertex v of U ( M), ¢ maps the collec-
tion {e;} one-to-one to the collection of edges {ei}
where €, ¢;,... are the oriented edges of U ( M)
with initial point v and e}, e),... are the oriented
edges of M with initial point #(v). ( This condition
is called "local homeomorphism” - the neighbour-
hoods of corresponding vertices look alike.)

The latter condition implies that a path p in M
is uniquely covered by a path § in &« (M) for a
given start point in & ( M). Let p be the sequence
Vo, €1, V1, €2, V3, ... and let vp be some point of U ( M)
which is mapped onto vy by ¢. Then there is a unique
edge €; incident with vp which is mapped onto e, giving
us an unique point v; of & ( M) which is mapped onto
v1. Continuing in this way we retrieve an unique path
in U ( M) which covers p once we have chosen a base-
point. This path p is called the Lifted path of p. Note
that closed curves are not necessarily lifted into closed
curves; in fact they are only lifted into a closed curve if
they can be contracted to a point ( theorem 1.1).

The proof of theorem 1.1 is quite simple and can be
found in Stillwell [St 80, 6.1.1].

3 The algorithm

3.1 Overview of the algorithm

The general idea of the algorithm is as follows. Starting
with a single copy of the canonical polygon we maintain
a structure representing a part of the universal covering
space. We pick a starting point and construct the lifted
curve. This means we have to add other copies of the
polygon to the structure. The adding is done such that
the structure is a disc, the lifted curve lies inside the
structure ( not on the boundary) and there won’t be a
pair of polygons in the structure representing the same

~part of the covering space. “If the lifted curve is com-

pleted we only have to test whether we the lifted curve
is closed or not, that is did we finish in the starting
point?

3.2 The structure

The structure we will maintain represents a part of the
universal covering space ( see section 2.2) and consists
of several polygons linked together. Each polygon ap-
pearing in our structure is either a 4g-gon ( as in the



universal covering space) or a polygon under construc-
tion. This will be a triangle which we will call an un-
finished polygon. A edge is called a boundary edge
if it bounds the structure. A polygon in the structure
will have a pointer for each of its edges. If the edge is
not a boundary edge, the pointer will point to the other
polygon which is incident with the edge. In this way
given a polygon and a edge ( which corresponds to a
certain generator) we can find in constant time the cor-
responding adjacent polygon ( if it is in the structure).
Each edge in the structure is given one of the following
colours :

e white, if it is a edge between two 4g-gons.

e black, if it is a edge between two polygons which
are not both finished. It will turn out that arcs are
never black.

e red, if it is both a spoke and a boundary edge.
e blue, if it is an arc and a boundary edge of a 4g-gon.

e green, if it a boundary edge of an unfinished poly-
gon and not a spoke. It will turn out that green
edges correspond to a set of consecutive arcs in
the universal covering space. One might call these
edges ”super-edges”.

Vertices can have two colours. A vertex with distance k
is purple if it is connected by a single spoke with a vertex
at distance k — 1 and yellow otherwise. See figure 2.

With each polygon its distance is associated. We also
need a pointer pointing to the current polygon.

Our structure initially consists of one 4g-gon which
we will call our base polygon, with distance 0. All its
edges will be blue.

3.3 Adding to the structure

There are just three ways to enlarge the structure :
1. Complete an unfished polygon.
2. Adding a bridge to the structure.

3. Adding a fan of unfinished polygons. A fan consists
of 4g—3 or 4g—4 triangles separated by black edges.

Obviously each of the cases takes O ( g) time, and

enlarges the structure with size O (g). We also define
the following procedure :
Complete neighbourhood of vertez v. v is already in the
structure having distance k. Also if this procedure is
called than the bridge(s) with distance k v is incident
with are also in the structure. v has to incident with
two bridges with distance k+ 1 so those are added to the
structure, if they were not already. Finally the fan of v
is added. Of course, given a pointer to v this procedure
can be performed in O ( g) time.
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During the algorithm we will maintain some invari-
ants or which we will mention :

1. The structure represents a part of the universal cov-
ering space and is homeomorphic to a disc.

2. The neighbourhood of the current vertex is in the
structure.

3. All bridges in the structure are finished.

4. All edges travelled are white.

3.4 The algorithm

Let s be the string of which we want to determine
whether it reduces to 1 or not. If s = ¢ it does, so
we are ready.

Otherwise we initialize the structure with a single 4¢-
gon, all of its edges blue. Pick any vertex v and complete
its neighbourhood. v will be the first current vertex.

While s <> ¢ we will do the following :

Let s = as’. Let e be the edge incident with v cor-
responding to a. Let v’ be the other endpoint of e.
Depending on the colours of ¢ and v' we will do the
following :

1. e is black. Then v’ has to be purple. First we will
finish those polygons incident with e which are not
finished. This will be at least one polygon and (of
course) not more than two. Then the neighbour-
hood of v is completed.

2. eis white and v’ is yellow. Then the neighbourhood
of v’ is finished. See figure 3.

3. e is white and v’ is purple. Then v’ is the endpoint
of a spoke ¢’ whose other endpoint w has lesser
distance than v. Depending on the colour of ¢’ we
will do :

(a) € is white. In this case we complete the neigh-
bourhood of v’.

(b) €’ is black. Then ¢’ is incident with one unfin-
ished polygon. These polygon will be finished

-~ after -which the neighbourhood of v’ will be
completed. See figure 4.

(c) ¢ is red. In this case e’ is the last edge of
a chain of red edges. ( Possibly a chain of
one edge.). Let the chain be e;,e;,...,¢; =
¢’, separated by the vertices vg,vy,...,v =
v'. v has smallest distance and is starting

point of the chain. Every next vertex has a

distance of one more. For v; = vy,...,v; we

will complete the neighbourhood of v;. See

figure 5.
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Finally v’ will be the new current vertex and s := s’.

If we processed the whole string s we have to check
whether we ended in the starting point or not to deter-
mine if the lifted curve is closed or not.

3.5 Complexity

Theorem 3.1 Given a group G generated by the set
{a1,b1,a2,by,...,a4,b} and the set of relations R =
{a1@ = byb; = azdy = byby = --- = a,d, = b,E =
albﬁlzlazbzﬁzzz...agbgﬁgzg = 1} and an ezpression
s = mazaz...a, in G. The question whether s equals
1 can be answered in time O ( gn) using O (gn) storage.

Proof We will use the algorithm of section 3.4. Its
correctness can easily be proven using the invariants.
For details we refer to the full paper.

In the cases 1), 2), 3a) and 3b) it is easy to see the
algorithm needs O( g) time and adds O(g) storage. This
leaves us one difficult case, case 3c. Suppose we have a
chain of k red edges. Then we have to complete k + 1
neighbourhoods, taking O ( kg) time. Notice however
that each red edge is a spoke and a boundary of a bridge.
Also each bridge can have at most one red edge. Also
to reach such a red edge Q2 (g) blue edges of that bridge
have to be made white. Also on each completion of
a neighbourhood at most one blue edge per polygon is
made blue. So we can charge the costs per red edge over
§2(g) other updates. Since non-red edges never become
red again, each blue edge is charged once, giving an
amortized update time in case 3c) of O ( 1).

q.e.d.

4 Conclusions

In this paper we gave an algorithm to determine whether
a word in a fundamental group of a 2-manifold equals
1 or not. Of course the algorithm can be used to de-
termine if two words W; and W, belong to the same
equivalence class. If so then Wy (W,)~! = 1.

The use of the universal covering space is interesting
and can be used for related problems such as the con-
tractibility problem ( see Schipper [Sc 92]) or the deter-
mination of shortest curve homotopic to a given curve.
This can be done by constructing a sufficient large part
of the universal covering space and using Dijkstra’s al-
gorithm. However, it is not clear if it can be done in
polynomial time.

.
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Figure 1: The canonical polygon of the double torus and the neighbourhood of a vertex in the
universal covering space.

Figure 3: Travelling a white edge. towards a vellow vertay
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Figure 4: Travelling a white edge, towards a purple vertex 1.

Figure 5: Travelling a white edge, towards a purple vertex II.



