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1 Introduction

During the last years, many works have dealt with the definition of combinatorial models for representing the
topology of subdivisions of topological spaces (a subdivision is a partition of the space into cells of dimensions 0,1,
2,3 ..., i.e. into vertices, edges, faces, volumes ...). Handling subdivisions is required for many problems (for instance
for computing Voronoi diagrams, and more generally for geometric modelling). These combinatorial models present
many interests (cf. [10]). For instance, it is often possible to easily deduce data structures from these combinatorial
models. Moreover, it is often possible to compute important topological properties on these combinatorial models
(orientability for instance). In fact, efficient combinatorial models are very important for the conception of efficient
basic algorithms (i.e. such models may be used in order to reduce the complexity of geometric algorithms [4], [10]).

We may distinguish between simplicial or cellular combinatorial models. Models (cf. [8] for instance) have been
defined for representing the topology of simplicial complexes, i.e. (informally) collections of simplices (a 0-
dimensional simplex, or O-simplex, is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex is a
tetrahedron ...). Other models are cellular ones : it is possible to represent collections of any cells (vertices, edges,
faces, volumes .... : cf. for instance [1], [3], [6], [17], [14]), i.e. it is possible to represent cellular complexes. For
each type of model (simplicial or cellular), we may distinguish between manifold and non-manifold combinatorial
models. Many models have been defined for modeling the topology of subdivisions of manifolds (manifold modeling ;
cf. for instance [2], [3], [4], [5]), [10], [11], [13], [16], [17]). Informally (and with a constructive point of view), an n-
dimensional "manifold” object may be constructed by "joining” at most two n-dimensional cells along an (n-1)-
dimensional cell which bounds them (for instance, joining 2 faces along an edge, 2 volumes along an incident face ...).
Other models have been defined for representing the topology of “non-manifold” geometric objects. Examples of non-
manifold objects are : an object composed by two volumes which are only adjacent through a vertex, a volumic object
with dangling edges and faces, an object with an incomplete boundary ... (cf. for instance [8], [14], [15], [18]).

Many important problems are not solved, concerning combinatorial models (in particular cellular models). For
instance, what are the "geometric objects” whose topology is described by cellular models (for instance, a cell is
possibly not a simplex. But what is a cell 7) ? What are the relations between the different combinatorial cellular
models (for instance between incidence graphs and ordered models : cf. [4n?

We have studied these problems in the following way :

— we have defined a combinatorial simplicial model, slightly generalized compared to classical simplicial (it is
possible to define objects composed by simplices, such that an i-dimensional simplex is possibly not incident to
lower-dimensional simplices, i.. the boundary of a simplex is possibly incomplete) ;

— we have constructed a hierarchy of simplicial models, by restricting the modeling domain (j.e. for instance,
we deduce models which allow the representation of simplicial manifolds from models which allow the representation
of simplicial complexes ; this construction is a classical one, and produces well-known models).

— we have defined cellular models as simplicial models to which a structuration is added. In other words, a
combinatorial cellular complex is defined as a combinatorial simplicial complex structured into cells (this idea may be
deduced from [4]). An i-dimensional cell is an i-dimensional simplicial manifold which satisfies some properties. In
particular, each vertex of the simplicial manifold which defines the cell is associated with a number between 0 and i,
and a unique vertex is associated with i (cf. [7] for more details). We have defined a combinatorial cellular model,
whose definition is very close (in its principle) to the definition of the simplicial model presented above.

— as for the simplicial case, we have constructed a hierarchy of cellular models, by restricting the modeling
domain. It is easy to show that most combinatorial cellular models used in geometric modeling are equivalent to one
of these combinatorial models (manifold or non-manifold models).
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We present in this paper the second part of this study, i.e. the definition of the basic cellular model (n-dimensional
chains of maps), and some models deduced from this model. Chains of maps are an extension of n-dimensional
generalized maps (or n-G-maps : cf. [11]). It is possible to represent the topology of non-manifold cellular objects (i.c.
cellular complexes). More precisely, an n-dimensional chain is composed by 0-, 1-, ... n-dimensional cells (i-cells are
represented by an i-G-map G'). To each i-cell are associated the lower-dimensional j-cells which define its boundary (by
applications o, 0 < j < i, defined on G*). A unique low-level operation is needed for handling chains of maps (contrary
to other models, which need many basic operations : cf. [18] for instance), simplifying thus the construction of chains.
Other models, corresponding to particular classes of chains, may be easily deduced from the definition of chains (cf.
section 4), for instance "closed” n-dimensional chains. The definition of n-dimensional generalized maps is reminded in
section 2. Chains of maps are defined in section 3. Particular cases of chains are studied in section 4. We conclude in
section 5.

2 N-dimensional generalized maps

In this section, the notion-of the n-dimensional generalized map (or n-G-map) is reminded ([11]). In order to simplify,
we give a recursive definition of n-G-maps. Definition of n-G-maps is based on a unique type of elements (darts), on
which elementary functions act. These functions are involutions (an involution « is a bijection, such that a? =
identity) : cf. Fig. 1. A unique type of object (orbits), defined using darts and involutions, unifies the definitions of
cells, connected components... Important topological properties, as orientability for instance, may be computed using
the notion of orbit. A unique basic operation (sewing) is needed for constructing any n-G-map, simplifying thus the
handling of n-G-maps.

A (-1)-dimensional generalized map (or (-1)-G-map) is defined by G = (B), where B is a finite set of darts. An n-
dimensional generalized map (or n-G-map) is defined by an (n+2)-tuple G = (B,ay,...,0,), with :

- (B,0g,.,0%,) is an (n-1)-G-map ;

— 0., is an involution on B, such that, for any i (0 <i S n-2), 0,0, is an involution (notations : a(b) = ba, and
(o' o a)(b) = baar').

The orbit <oy, @, ...04,>(b), incident to dart b, is the set S, of all darts which "can be reached", starting from b, by
successive applications of involutions oy; (0 < j < p ; more precisely, this orbit is the p-G-map (Sy,,a';o, O, -0,
where ', is the restriction of a;, 1o Sp, ds j < p). The i-dimensional cell incident to dart b (or (i,n)-cell of n-G-map
G, incident to dart b) is defined by <ay, ... & ;, &, ... &, >(b). The connected component incident to dart b is defined
by <ay, @, ...c.,>(b) (cf. Fig. 1). The boundaries of a connected component may be easily defined using the darts of
the connected component which are invariant by 0 (for i between 0 and n : cf. Fig. 1 and [11]).

Any n-G-map may be constructed by successive applications of a unique basic operation : sewing. Examples of sewing
are shown in Fig. 1 : 2-dimensional sewing consists in sewing at most two faces (orbits <0, 0,;>) by o, along edges
which bound these faces (i.e. orbits <0y>) ; 3-dimensional sewing consists in sewing at most two volumes (orbits
<@, oy, @,>) by 0, along faces which bound these volumes (i.e. orbits <@y, @,>). More generally, n-dimensional
sewing consists in joining at most two n-cells (orbits <ay, @), ..., ;>) along (n-1)-cells which bound these n-cells
(i.c. orbits <ay, 0, ..., ,>). Other notions concerning n-G-maps (duality, orientability ...) are presented in [11]. A
(partial) comparison between n-G-maps and other combinatorial models is presented in [12].

a 0-dart @ e sewingtwo 1 2
<0,>(1)={(1) dantsby @y <@ >(1)=(1.2)

0, is symbolized by arrows

———
*—i 2 sewing twoedges [, 1 a subdivision, whose
a l-dart <a,;>(1) (orbits <xp>), <a>(1) topology is represented
=(1) ??Gal,ina = {12} by the 1-G-map

— . "

0, is symbolized by little segments, a, by black disks
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a subdivision, whose
<y >(1) = (1,2} <ag.a, >(1)={1,23,4) topology is represented
sewing two faces (orbits <0g,0, >), by the 2-G-map

with a5, along orbits <a,>

., is symbolized by thick segments

constructing a 3-G-map, by sewing two
volumes, and a subdivision whose topology
is represented by this 3-G-map (i.e. two
cubes incident to a same square). 3-darts
should be represented by tetrahedra. In order
to simplify, they are represented as 2-darts.

0., is symbolized by the thickest segments
Figure 1 : 0-, 1-, 2- and 3-G-maps (the graphical represention of darts depends on the dimension of the generalized
map ; this graphical representation is related to the fact that cells are in Jfact defined as structured simplical manifolds).
The boundary of the 2-G-map (corresponding to the boundary of the associated subdivision) is composed by edges
incident to the darts which are invariant by a, (i.e. darts b, such that ba, = b) ; similarly, the boundary of the 3-G-
map (corresponding to the boundary of the associated subdivision) is composed by faces which are incident to the darts
i’lvaria’lt by a,.

3 N-dimensional chains

N-dimensional chains of maps (or n-chains) are a combinatorial model, which may be used for representing collections
of cells and incidence relations between these cells. In fact, it is possible to represent, using n-chains, the topology of
non-manifold cellular objects with (maybe) incomplete boundaries. Chains of maps are presented here in a constructive
way (by recursion on the dimension of the chain), i.e. we show how to construct chains by "adding" cells (cf. also the
construction of CW-complexes in [9]). More precisely, an n-chain is composed by i-dimensional cells (for i between 0
and n). Each i-dimensional cell is an (i,i)-cell of an i-G-map G' = '0g.0.)...01;), such that o is the identity on B'. In
fact, we will consider that the i-G-map defines only this (i,i)-cell, and not its boundary (this is not strictly the
interpretation of n-G-maps given in the previous section. N-G-maps as defined in section 2 may be used for the
representation of cellular manifold objects. They correspond in fact to a particular case of n-chains, as claimed in
section 4). To each i-cell are associated the lower-dimensional j-cells which define its boundary, by applications o}, 0<
Jj <i, defined on the darts of G
= 8 O-chain C is defined by C = (G°), where G° = (B®,00) is a 0-G-map, such that g = identity on B, Each
(0,0)-cell of G is a 0-dimensional cell of the chain (i.e. a vertex or a 0-cell : cf. Fig. 2);
—a I-chain C is defined by a 3-tple C = (G°.G' 6}), with :

* (G") is a Ochain ;

*G' = (B',04,01}) is a 1-G-map, such that o = identity on B!. Each (L,1)-cell of G' is a I-cell (i.c. an
edge) of the chain ;

6y :B' 5BV (g} isan application which associates to each vertex of G’ (i.c. (0,1)-cell of G*), either
a vertex of the chain (i.e. a (0,0)-cell of G°; in this case, for each dart b of the (0,1)-cell, bc,l, € B"), either nothing (in
this case, for each dart b of the (0,1)-cell, bo, = € ; the boundary of the I-cell is then incomplete). Intuitively, o,
defines the boundaries of the edges of the chain (if they exit), i.e. c}, may associates a vertex to each extremity of each
edge of the chain : cf. Fig. 2 ;
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- a 2-chain C is defined by C = (G°,G',G%.6},02,07), with :

« (G°G',0}) is a 1-chain ;

- G* = (B%,0,0;,03) is a 2-G-map, such that o2 = identity on B2 ; each (2,2)-cell of G is a 2-cell of the
chain (i.e. a face) ;

« 0 : B2 — B’ U (g) is an application which associates to each vertex of G (i.c. to each (0,2)-cell of
G"), either a vertex of the chain (i.e. a (0,0)-cell of G°), either nothing ;

»o; : B - B! U () is an application which associates to each edge of G* (i.c. to each (1,2)<cell of G,
either an edge of the chain (i.e. a (1,1)-cell of G'), either nothing. Moreover, of and 0'3 are such that, for any dart b of
B2 if bo'l2 #E, bog = bc,zo;’, (i.e. if an edge of the chain is associated with an edge of G2, these edges have a same
boun :cf. Fig.2);

da:ya 3-chain C is defined by C = (G°.G',G*.G’,6),03.62,63.07,62), with :

. (G°,GI.GZ,6(’,,0'§,03'12)' is a 2-chain,

* G’ = (B’,03.,07.05,0)) is 2 3-G-map, such that o = identity on B? ; each (3,3)-cell of G* is a 3-cell of
the chain (i.e. a volume) ;

«0y:B* 5B {e) (resp. o’ : B* 5 B' U (e}, c; : B’ - B2 (e)) is an application which associates
to each vertex (resp. edge, face) of G (i.e. to each (0,3)-cell (resp. (1,3)-cell, (2,3)-cell) of G’), either a vertex (resp.
edge, face) of the chain (i.e. a (0,0)-cell of G° (resp. a (1,1)-cell of G, a (2,2)-cell of G?), either nothing (in this case,
the boundary of the 3-cell of the chain is incomplete). Applications o;" (0 <i < 2) are such that, if an edge (face) of the
chain is associated with an edge (face) of the 3-cell, these edges (faces) have a same boundary (cf. definition of n-chains
below).

This may be easily generalized for higher dimensions, and an n-chain C is defined by C = (G°,...,G“,oé,...,o‘(‘,'. G0,
with :

= (G*+sG™ 040" . 0%3) i AN (n-1)-chain, which defines the 0-, 1-, ... (n-1)-cells, and the relations
between these cells ;

-G" = (B",0q,...,0,%,a2) is an n-G-map, such that a; = identity on B®,whose (n,n)-cells define the n-cells of
the chain ; .

— for each i between 0 and n-1, o} : B* — B' U (g} is an application which associates to each (i,n)-cell of G,
either an i-cell of the chain (in this case, for each dart b of the (i,n)-cell, bo} € B'), either nothing (in this case, for
each dart b of the (i,n)-cell, bo‘i’ = ¢ ; the boundary of the n-cell is then incomplete).

These applications satisfy the following properties : .
-CVvbe B",andforeachk,OSksi-l.ba,"'o‘i‘zbo’i’u;, or bo, 0} = bo},
-(C2) Vbe B, and for each k, i+1 Sk S n-1, bafe = ba?, _
-(C3) Vb e B", and for any i, j, suchthat0<j<i<n-1,bol #e = bc;’=bo‘:‘oj
For instance, (C3) means that, if an (i,n)-cell is associated with an i-cell, these two cells have a same boundary.

It is clear that it is possible to represent, using chains of maps, the topology of non-manifold cellular objects (cf. Fig.
2). Many notions, classical in algebraic topology, may be easily defined on n-chains, for instance notions of connected
component, skeleton, ... For instance, it is clear that the boundary of a cell may be easily defined (similar for the star
of a cell, i.c. the set of cells whose boundaries contain the cell) : cf. Fig. 2. These different notions are unified through
a same formalism, which is the notion of (i,n)-chain (this notion is similar to the notion of orbit defined for n-G-

maps). An (i,n)-chain C = (G',...G".6'",6"12,02,....0%,... 6,%) is defined as an n-chain (just replace dimension 0 by

n-1

dimension i in the definition of n-chains above ; an n-chain is in fact a (0,n)-chain : cf. [7]). It is possible to construct

any n-chain by a unique operation ("adding” operation : cf. Fig. 2). In fact, this operation may be defined as the
composition of two operations : an operation for adding an i~cell without boundary, and an operation for joining a (j.i)-
cell of an i-cell to a j-cell. It is thus possible to gradually construct the boundary of the i-cell (in an interactive process,

for instance). . '
b -
=) 0—'1—:'(@1\,.‘;‘9

° 1 .

a 0-chain =
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an example of construction of 0-, 1- and 2-chains, by adding 0-, 1- and 2-cells.

darts 3, 5, 7, 9, 11, 13 are associated

with dart 1 by 1 darts 4, 6, 8, 10

12, 14 are associated with dart 2.
Figure 2 : examples of 2-chains : notice that o; are possibly not isomorphisms (left) ; right, a cellular complex
composed by a vertex, an edge and a face, such that the face is incident 6 times to the edge. Notice that if the degree of

the face is 4 (i.e. it is incident to 4 darts), this cellular complex is an (abstract) projective plane.

4 A hierarchy of combinatorial cellular models

Many particular cases of the notion of n-chain may be defined, for representing sub-classes of cellular complexes ([7]).
For instance, the topology of cellular complexes, in which each cell has a complete boundary, may be represented by
“closed” n-chains. The definition of this notion is similar to the n-chain definition. A closed n-chain is composed by i-
dimensional cells (0 < i < n). Each i-cell is an (i,i)-cell of an i-G-map G'. To each i-cell are associated the (i-1)-cells of
its boundary, by an application &, defined on the darts of G-.

More precisely, a closed O-chain C is defined by C = (G%), where G° = (B°0Y) is a 0-G-map, such that o9 = identity on
B”. A closed n-chain C is defined by C = (G’,...G"6",....0"), with :

~(G"....G*'0",...6"") is a closed (n-1)-chain ;

-G" = (B",0g,...,a,",a7) is an n-G-map, such that @, = identity on B® ; each (n,n)-cell of G® is an n-cell -

— 6" : B" - B™ is an application which associates an (n-1)-cell of the chain (i.e. an (n-1,n-1)-cell of G™*) 1o
each (n-1,n)-cell of G". Moreover, 6" is such that an i-cell of the chain (0 < i < n-2) is associated to each (i.n)-cell of
G”, by applying ¢"...0™*, i.e. 0 satisfies the following ies :

*Vbe B, Vk (0 <k <n-2), bajo" = bo"a";! or bal'c” = bo™;

*Vbe B", bo,",c"0"! = bo"c™"!,
These two properties correspond to properties (C1), (C2) and (C3) defined for n-chains (cf. section 3). Notions defined
for n-chains (in section 3) may be defined for closed n-chains in a similar way : boundary of a cell, star of a cell,
connected component, skeleton ... These notions are also defined through a unique notion of closed (i,n)-chain. Any
closed n-chain may be constructed by applying a unique operation (adding operation). Notice that a cell may be added if
its boundary has been previously constructed. Adding cells in a closed n-chain is thus more constraining than adding
cells in an n-chain.

- It is also possible to define other combinatorial models which are particular cases of the notion of n-chains. For
instance, cellular manifolds (resp. oriented cellular manifolds without boundaries) may be represented by n-dimensional
generalized maps (resp. n-dimensional oriented maps) : cf. [11]. It is then possible to define a hierarchy of
combinatorial models (from n-chains to n-maps), each one corresponding to a particular sub-class of cellular complexes
(ct. [7]).

5 Conclusion

The topology of non-manifold cellular objects (cellular complexes), with incomplete (resp. complete) boundaries, may
be represented by n-chains (resp. closed n-chains). These two notions are based on :
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— two types of functions which act on darts :

* intra-cellular operators (which are involutions), which define the cells of an n-chain (closed or not). All
notions (associated to these cells) are defined through a unique notion of orbit. Any cell may be constructed by a
unique sewing operation.

* inter-cellular operators (which are applications), which define the relations between cells of an n-chain (closed

or not). Most notions associated to (closed) n-chains are defined through a unique notion of (i,n)-chain. Any (closed) n-
chain may be constructed by a unique adding operation.
Chains of maps are in fact a generalization of ordered models (cf. [4] and [12]) for the representation of cellular
complexes. Contrary to most combinatorial cellular models used in geometric modelling, the relations between chains
of maps (and the deduced models : closed chains of maps, n-dimensional generalized maps...) and algebraic topology are
clearly established (informally, n-chains describe simplicial complexes structured into cellular complexes : cf. [7]).

We are studying the following developments :

~ the definition of sub-classes of n-chains, for representing particular sub-classes of cellular complexes (for instance,
closed n-chains are such a-particular sub-class) ;

— the embedding of n-chains (in E®, for instance) ;

— the implementation and experimentation of the basic notions presented here ;

— problems related to particular applications, for instance interactive geometric modeling and discrete topology.
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