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Abstract

A strictly convex quadrilateral is a convex
quadrilateral whose angles are all strictly less
than 180°. In this paper we show that a poly-
gon on n vertices can always be decomposed into
at most 5(n — 2)/3 strictly convex quadrilater-
als and that n — 2 are sometimes necessary. We
also show that a polygon on n vertices and h
holes can always be decomposed into at most
[8(n + 2h — 2)/3] strictly convex quadrilaterals.
We give algorithms for constructing the decom-
position which run in linear time after triangu-
lation. This problem has applications in mesh
generation for finite element methods.

1 Introduction

The problem of triangulating a polygon, that is,
decomposing it into non-overlapping triangles,
has been thoroughly investigated. It is known
that a simple polygon P with n vertices and
h holes can always be decomposed into exactly
n + 2h — 2 triangles and efficient algorithms for
constructing triangulations have been presented
(7] [4 [1).

A conver quadrilateralization of P is a decom-
position of P into non-overlapping convex quadri-
laterals. Kahn, Klawe and Kleitman have shown
that any orthogonal polygon can be decomposed
into n/2 4+ h — 1 convex quadrilaterals [5] and
Sack and Lubiw have presented O(nlogn) algo-
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rithms for constructing such a quadrilateraliza-
tion [8] [6].

Triangulating and quadrilateralizing are two
examples of the more general operation of de-
composing geometric objects into simpler compo-
nents. These operations are employed in the solu-
tion of many geometric problems in areas such as
graphics, solid modeling and finite element meth-
ods. Typically these applications demand that
the simple components satisfy certain properties
such as being “well-shaped” and small in num-
ber. While some methods are known for generat-
ing triangulations satisfying some of these prop-
erties (see for example [2]), there are no results
for quadrilateralizations. In this paper we con-
sider quadrilateralizations satisfying the “well-
shaped” criteria that all quadrilaterals are con-
vex and that no quadrilateral contains three (or
more) collinear points.

Formally, let P be a simple polygon on n ver-
tices and h holes. P may contain collinear ver-
tices. A polygon is strictly convez if all of its
angles are < 180°. A strictly conver quadri-
lateralization is a convex quadrilateralization in
which all quadrilaterals of the decomposition are
strictly convex. Notice that, for example, the
polygons in Figure 1 are not considered to be
strictly convex quadrilaterals: (a) is not strictly
convex and (b) is not a quadrilateral.

If we insist that the vertices of all of the quadri-
laterals are also vertices of P then a convex
quadrilateralization is not always possible; con-
sider for example a regular pentagon. Therefore,
we permit the vertices of the quadrilaterals to
be Steiner points, that is, points which are not
vertices of P. Notice that once we allow Steiner
points the number of quadrilaterals in a decom-
position is no longer simply a function of n and
h. In this paper we are interested in quadrilat-
eralizations which use a small number of quadri-
laterals.
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(a) (b)

Figure 1: Not strictly convex quadrilaterals

(a) (b) (©

Figure 2: Lower bound examples

We require the following definitions. The dual
graph of a triangulation is the graph containing
one vertex for each triangle and an edge between
two vertices if the corresponding triangles share
a diagonal. If the triangulation does not con-
tain holes then this graph is a tree. A Steiner
point p is called perturbable if it can be moved
in such a way that it is a strictly convex vertex
in all quadrilaterals that contain it. If p is on
the boundary of a subpolygon P’ then it is called
in-perturbable (out-perturbable) if it can be per-
turbed to a point in the interior (exterior) of P'.

2 Polygons with holes

In this section we establish upper bounds on the
number of strictly convex quadrilaterals required
to quadrilateralize a simple polygon with holes.
However, we first present a lower bound on this
number.

Lemma 2.1 Let P be a simple polygon with n
vertices and h holes. Then n — h — 2 strictly
convez quadrilaterals are sometimes necessary to
quadrilateralize P.

PROOF  Consider the class of spiral polygons
containing three convex vertices, examples of
which are shown in Figure 2a and b. The mid-
points of the edges adjacent to the reflex vertices
form a set I of n — 2 points no two of which can
be contained in the same convex subset of the
polygon. One can add a small convex hole to
any of these examples by placing the hole suffi-
ciently close to the midpoint m of a reflex edge; I
is then modified by removing m and adding the
midpoints of each of the hole edges (see Figure
2c). After repeated additions of this type, I has
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Figure 3: Simple decomposition

n — h — 2 elements and these polygons therefore
require at least that many quadrilaterals. (]

Note that this lemma gives a lower bound of
n—2 quadrilaterals for the case of polygons with-
out holes.

We start our investigation of the upper bound
with a simple construction due to de Berg [3] that
produces 3n+6h —6 quadrilaterals. First decom-
pose the polygon into n + 2h — 2 triangles. De-
compose each triangle into 3 quadrilaterals using
the following approach: place a Steiner point at
the midpoint of each diagonal, at the midpoint of
each polygon edge, and in the center of each tri-
angle of the triangulation. Connect the Steiner
point in the center of each triangle to the three
Steiner points on its edges. An example is shown
in Figure 3.

The main idea of this section is to improve this
algorithm by, rather than quadrilateralizing each
triangle separately, first grouping the triangles
together into subsets and then quadrilateralizing
the subsets.



We start with a general lemma about odd
paths in trees. A path is called odd if it con-
tains an odd number of vertices. Note that an
isolated vertex is considered an odd path.

Lemma 2.2 Let T be a binary tree on t vertices,
t > 3. By removing edges, T can be partitioned
into at most [t/3] odd paths.

PROOF IfT is a path then either it is an odd
path or it can be partitioned into two odd paths.
So assume T is not a path. The proof is by in-
duction on t. Let v be a vertex of degree three
none of whose descendants has degree three. The
subtree T, rooted at v is a path of length at least
three.

If T, is an odd path then let 7' = T'—- T, ; that
is, T" is the tree T after the subtree rooted at v
has been removed. The tree 7' has t' < ¢t — 3
vertices and can, by induction, be partitioned
into at most [t'/3] odd paths. These paths to-
gether with the path T, partition T into at most
[t'/3] +1 < [t/3] odd paths.

If T, is an even path then let u and w be the
children of v. Let T, and T, be the subtrees
of T rooted at u and w respectively. As T, has
an even number of vertices, one of T, and T,
has an even number of vertices, say T, and the
other, say T, , has an odd number of vertices. Let
T"=T-T,~-T,. Note that T" has t' <t -3
vertices. By induction, 7" can be partitioned into
a set Q' of at most [t'/3] odd paths. One of
these paths, Q., contains v as a leaf. Let Q, be
the odd path consisting of Q,, T, and the edge
{v,u}. Now the set of paths Q' — Q. + Q, + T,
partitions T into at most [t'/3] — 1+ 2 < [t/3]
odd paths. (a]

Theorem 2.3 A polygon with holes can always
be decomposed into at most [8(n + 2k — 2)/3]
strictly convez quadrilaterals.

PROOF Consider a triangulation of the poly-
gon into t = n + 2h — 2 triangles and its cor-
responding dual graph. First, place a Steiner
point at the midpoint of each polygon edge and
each diagonal of the triangulation. Now, let
S be a spanning tree of the dual graph. By
the previous lemma, S can be partitioned into
p odd paths, where p < [t/3]. For each path
Q = qo,...,q2t, we quadrilateralize the corre-
sponding set of triangles ¢, .. .,2, according to

Figure 4: Decomposing an odd path

the following scheme. Place a Steiner point at
the center of t3;, 0 < i < k. See Figure 4. Add
an edge from each Steiner point in the center of a
triangle to the three Steiner points on the edges of
that triangle. In the remaining triangles, add an
edge from the vertex common to the two neigh-
boring triangles to the Steiner point on the oppo-
site edge. Although some of the quadrilaterals so
created are not strictly convex, they can be made
strictly convex by perturbing the Steiner points
on the diagonal edges.

Color each of the odd paths according to
the following scheme: color the first vertex red
and then alternate coloring vertices blue and
green. Note that each red vertex corresponds
to a triangle decomposed into 3 quadrilaterals
and that each blue-green pair corresponds to a
set of two triangles decomposed into a total of
5 quadrilaterals. There are p red vertices and
(t — p)/2 blue-green pairs; in total then there
are 3p + 5(t — p)/2 = (5t + p)/2 quadrilater-
als. Since p is at most [¢/3], there are at most
(5t + [t/3])/2 = [16t/3]/2 < [8t/3] quadrilat-
erals. Since t = n + 2h — 2 we have at most
[8(n + 2h — 2)/3] quadrilaterals. u]

3 Polygons without holes

In this section we establish a much improved up-
per bound of 5(n—2)/3 on the number of quadri-
laterals necessary for polygons without holes. We
begin with a series of lemmas about quadrilater-
alizations of quadrilaterals and pentagons.

Lemma 3.1 Let F be a quadrilateral with one
oul-perturbable Steiner point s placed on its
boundary. F can be divided into at most three
strictly convez quadrilaterals, while placing only
one other Steiner point on the boundary of F (on
an edge other than the one containing s).
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(@) (b) (c)

Figure 5: A quadrilateral with one specified
Steiner point

PROOF If F is convex, then place a Steiner
point t on the edge of F' not adjacent to the edge
containing 8. Connect s and ¢, as shown in Figure
5a, to divide F' into two strictly convex quadri-
laterals.

If F is not convex, then s is either on an edge
adjacent to the reflex vertex or on one of the two
convex edges (edges with both endpoints convex).
In the former case, we add a Steiner point ¢ in the
kernel of F on the convex edge adjacent to the
edge containing s; t is connected to the reflex ver-
tex as shown in Figure 5b. This forms two con-
vex quadrilaterals; out-perturbing s makes them
both strictly convex.

If 5 is on a convex edge, then place Steiner
point ¢ on the other convex edge so that s and ¢
are visible. Place another Steiner point u in the
kernel of F, on the same side of the chord st as
the reflex vertex. Connect as shown in Figure 5c
to form three strictly convex quadrilaterals. O

For the following lemmas, we will use the fol-
lowing notation: F will be a pentagon that has
been triangulated. This triangulation necessarily
consists of three triangles, two of which are ears.
Let C denote the center triangle, and L and R be
the two ears. The three triangles share a vertex
k which is guaranteed to be in the kernel of F.
A boundary edge of a triangle is an edge of the
triangle on the boundary of F.

Lemma 3.2 Let F be a pentagon with one
Steiner point s placed on its boundary. F can be
divided into at most five strictly conver quadri-
laterals without placing any other Steiner points
on the boundary of F.

PROOF We consider cases depending on where
the Steiner point s lies. The cases are illustrated

Figure 6: A pentagon with one Steiner point on
the boundary

on one particular shape of F but the arguments
do not depend on this shape.

Case 1: s is on the boundary edge of C.
Add Steiner points ¢;, t; in the middle of the
other two edges of C' and o in the center of
Astyty. Connect the vertices of F and the Steiner
points as shown in Figure 6a to form five quadri-
laterals. These quadrilaterals are (non-strictly)
convex, as they are either a triangle of the trian-
gulation, or are part of a “radial decomposition”
of C. To make these quadrilaterals strictly con-
vex, move t; and ¢, slightly towards ¢;.

Case 2: s is on the boundary edge of L (or,

symmetrically, R) adjacent to the boundary edge
of C.
Add Steiner points tp and t; to the edge that L
shares with C, with ¢; closer to k. Also add a
Steiner point ¢, to the edge that R shares with
C. Connect as shown in Figure 6b to form five
quadrilaterals. Each of these quadrilaterals is
convex as it is either a triangle of the triangu-
lation or formed by cutting such a triangle with
a chord. To make the quadrilaterals strictly con-
vex, move t; towards s and ¢, towards tg.

Case 3: s is on the boundary edge of L (or,
symmetrically, R) adjacent to k.
Add Steiner point t, to the edge shared by L and
C, and place Steiner point t; in the intersection of
C with the kernel of F, sufficiently close to k that
the line containing s and ¢y does not separate ¢,



from k. Connect as shown in Figure 6¢ to obtain
four strictly convex quadrilaterals. o

The proofs of the following two lemmas are
similar to that of Lemma 3.2 and are omitted
in this extended abstract.

Lemma 3.3 Let F be a pentagon with one out-
perturbable Steiner point s placed on the bound-
ary edge of C, one Steiner point t on the bound-
ary edge of L (symmetrically, R) not adjacent to
k, and one Steiner point u on a boundary edge
of R (symm., L). F can be divided into at most
Jfive strictly convez quadrilaterals without placing
any other Steiner.points on the boundary of F.

Lemma 3.4 Let F be a pentagon with one out-
perturbable Steiner point s placed on the bound-
ary edge of C, one Steiner pointt on a boundary
edge of L, and one Steiner point u on a bound-
ary edge of R. F can be divided into at most siz
strictly conver quadrilaterals without placing any
other Steiner points on the boundary of F.

Theorem 3.5 Any n-gon P can be decomposed
into at most 5(n — 2)/3 strictly convez quadrilai-
erals (for n > 4). Furthermore, this can be done
in such a way that every edge of P contains at
most one Steiner point.

PROOF We prove the theorem by induction on
n. The basis cases are n=4andn=5;n=4
is handled as in Lemma 3.1 (avoiding the case
where s is out-perturbed) to give three quadrilat-
erals. n = 5 is handled by placing a Steiner point
on any edge and applying Lemma 3.2 to give five
quadrilaterals. We henceforth assume by induc-
tion that the theorem holds for all n smaller than
the one we are considering.

First, we triangulate P. Note that there is al-
ways a diagonal of the triangulation that cuts off
3-5 triangles (see, e.g. [7], pg. 7); let D be such
a diagonal that cuts off the minimum number of
triangles. Let the 3-5 triangle fragment thus cut
off be called F, and the rest of P be called P'.
We consider cases depending on the size of F.

Case 1: F consists of three triangles.
Inductively decompose P’ into at most 5((n —
3) —2)/3 strictly convex quadrilaterals, in such a
manner that D contains either zero or one Steiner
points. If D contains a Steiner point, then ap-
ply Lemma 3.2 to F with the same Steiner point
to yield a decomposition of F into at most five

Figure 7: D cuts off 4 or 5 triangles

quadrilaterals. Combining the decompositions
for P’ and F gives a decomposition of P into
at most 5((n —3) —2)/3+5 = 5(n —2)/3 strictly
convex quadrilaterals. If D does not contain a
Steiner point, then apply Lemma 3.2 to F with
a Steiner point on any edge but D to obtain the
same result.

Case 2: F consists of four triangles.

As D is minimal, the dual tree of F must have a
node C' (dual to the triangle containing D) with
two children L and R, one of which (wlog R) has
a child R;; this structure is shown in Figure 7a.
Let E be the diagonal shared by R and R,. E
may or may not share an endpoint with D. Let
F' be the pentagon consisting of the triangles
dual to C, L, and R.

Inductively decompose P’ into at most 5((n —
4) — 2)/3 strictly convex quadrilaterals, in such a
manner that D contains either zero or one Steiner
points. If D contains no Steiner point, then ap-
ply Lemma 3.2 to F’ with a Steiner point s on
E to give a decomposition of F’ into at most five
strictly convex quadrilaterals. The triangle dual
to R,, considered with s, is a (not strictly) convex
quadrilateral, which we can make strictly convex
by perturbing s into F’. We have thus decom-
posed F into at most six strictly convex quadri-
laterals. Combining this with the decomposition
for P’ gives a decomposition for P with at most
5((n — 4) - 2)/3+6 < 5(n — 2)/3 quadrilaterals.

If D contains a Steiner point s, then apply
Lemma 3.3 to F’ with s, a Steiner point ¢ on
the edge of L adjacent to D, and a Steiner point
u on E to obtain a decomposition of F’ into at
most five strictly convex quadrilaterals. Again
the Steiner point on E is perturbed to make the
triangle dual to R; a strictly convex quadrilat-
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eral, and the same analysis holds.

Case 3: F consists of five triangles.

As D is minimal, the dual tree of F must have a
node C corresponding to the triangle containing
D with two children L and R, each of which has
a child (L; and R;); this structure is shown in
Figure 7b and c. Inductively decompose P’ into
at most 5((n — 5) — 2)/3 strictly convex quadri-
laterals, in such a manner that D contains either
zero or one Steiner points.

If D contains no Steiner point, then let E
be the diagonal shared by C and R, F’ be the
pentagon consisting of the dual triangles to C,
L, and L;, and ‘F"” be the quadrilateral con-
sisting of the dual triangles to R and R;, as
shown in Figure 7b. Apply Lemma 3.2 to F'
with a Steiner point s on E to give a decom-
position of F’ into at most five strictly convex
quadrilaterals. Apply Lemma 3.1 to F” with the
Steiner point s to give a decomposition of F”
into at most three strictly convex quadrilaterals
(another Steiner point appears on the boundary
of F”, but it is not on E and therefore does not
cause trouble). Combining the decompositions
for P’, F', and F” gives a decomposition of P
into at most 5((n — 5) — 2)/3 + 8 < 5(n — 2)/3
strictly convex quadrilaterals.

If D contains a Steiner point s, then let E; be
the diagonal shared by L and L, E, be the diag-
onal shared by R and R;, and F’ be the pentagon
consisting of the dual triangles to C, L, and R, as
shown in Figure 7c. Apply Lemma 3.4 to F’ with
s and two other Steiner points, ¢ and u, on E;
and E,, respectively, to obtain a decomposition
of F’ into at most six strictly convex quadrilat-
erals. The triangle dual to R;, considered with
t, is a (not strictly) convex quadrilateral, which
we can make strictly convex by perturbing s into
F’; we do the same to L; and u. Thus, we have
decomposed F into at most 6+ 1+ 1 = 8 quadri-
laterals; considered with the decomposition of P’
we have obtained a decomposition of P into at
most 5((n — 5) — 2)/3 + 8 < 5(n — 2)/3 strictly
convex quadrilaterals.

Note that we have never placed more than one
Steiner point on a polygon edge. o

4 Conclusions

Our results represent a first step in the study of
convex quadrilateralizations of simple polygons

with holes in the non-axis-parallel case. We have
shown upper and lower bounds on the number of
convex quadrilaterals required. Qur upper bound
proofs (for Theorems 2.3 and 3.5) are construc-
tive and can easily be implemented to run in lin-
ear time after triangulation of the polygon. How-
ever, our bounds are not tight; we suspect that
the upper bound can be lowered.

We are also interested in finding fast algo-
rithms to construct more restricted quadrilater-
alizations, such as requiring the quadrilaterals to
have good side-length ratios and no small angles.
Such properties are important for the application
to finite-element mesh generation.
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