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Abstract

We consider the following problem: given any two convex polygons which are free
to translate and rotate arbitrarily in the plane and which have m and n vertices
respectively, what is the maximum number of ways they may contact each other such
that three independent boundary contacts are made? This problem is similar to several
others which have been investigated in the field of combinatorial geometry, such as the
polygon containment problem, but has the significant difference that in our context
the polygons are allowed to overlap. We present the results of an empirical study of
the number of such configurations, and we prove that an upper bound on the total
is O(m®n? + m?n3).

1 Introduction

This paper is concerned with a problem in combinatorial geometry in the plane. Roughly
speaking, we are interested in the number of ways in which two convex polygons may
touch each other such that three independent boundary contacts are made. In other
words, the polygons are considered to be free to translate and rotate arbitrarily, including
in overlapping configurations, and we wish to establish an upper bound, in terms of the
complexity of the polygons, on the number of relative configurations satisfying the triple
contact condition. We present the best-known bound to date, as well as some empirical
evidence that perhaps a better bound is possible.

Given two convex polygons P and @, we denote the set of vertices of P (respectively Q)
by Vp (resp. Vg), and the set of edges of P (Q) by Ep (Eq). Then a simple contact is
defined as an ordered pair of one of the following two types:

o type I: (vp,eQ), where vp € Vp and eg € Eg
o typeII: (ep,vq), where ep € Ep and vg € Vg

*This paper was written while the first author was on leave at the Institut de Cibernatica. .
!This research was supported by the ESPRIT II Basic Research Actions Program of the EEC under
contract No. 3075 (project ALCOM).
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The contact manifold associated with a simple contact (vp,eq) (respectively, (ep,vg))
is defined as the set of all relative configurations of P and @ in which vp lies on eg
(resp., vg lies on ep). Now, a critical configuration of the two polygons is defined as a
relative configuration in which three independent simple contacts are made simultaneously.
Such a configuration is the intersection of three independent contact manifolds. The term
independent in this definition ensures that no relative configuration between P and Q will
be counted more than once. For example, when a vertex of P lies on a vertex of Q, it
can be seen that four simple contacts are made; however since there remains one degree
of freedom only two of them are independent.

Define K(P,Q) as the number of critical configurations for a particular pair of poly-
gons P and Q. The -problem, then, is to find an upper bound on

K(m, n) = max {K(P,Q) | P has m vertices and @ has n}.

Various similar combinatorial problems have been discussed in the robotics and com-
putational geometry literature. The aspect of our problem which makes it distinct is that
we allow the polygons to overlap. In most of the robotics applications, for example, one of
the polygons is taken as a model of a mobile robot, while the other models a workspace,
and in such a context any overlap represents a non-free configuration and hence does not
count. For example, [LS87] gives an upper bound of O(mnA,(mn)) on the number of in-
dependent contact triples (called “critical contacts”) for the case of a convex robot P and
an arbitrary polygonal environment @, which may be non-convex and even disconnected,
where s is a constant less than or equal to 6 and \,(q) is an almost linear function known
to be in O(qlog®q) for any constant s (see [Sze74]). Our problem is also related to the
“polygon containment” problem. There the goal is to determine whether a given polygon
will fit inside another. [Cha83] proves that this is true if and only if there exists a relative
configuration in which three simple contacts are made, and in addition gives an algorithm
to compute all such configurations in O(m®n3(m+n)log(mn)) time for arbitrary polygons
of size m and n. In this problem too the polygons are not allowed to overlap.

The original motivation for considering this problem was that it relates to the problem
of computing the five-dimensional “contact space” between two convex polyhedra. (This
contact space is equivalent to the boundary of the configuration space obstacle which would
arise in the problem of motion planning for one convex polyhedron in the presence of a
convex polyhedral obstacle.) Contact space can be used, for example, for planning relative
motions between two contact configurations during which the polyhedra remain in contact
throughout. In [TT89)], it was shown that the graph of the set of 5 and 4 dimensional
strata of the contact space along with their adjacencies is sufficient for solving this contact
motion planning problem, and furthermore that this graph has size ©(mn) and can be
computed in (optimal) time O(mn), where m and n in this case are the numbers of edges
in the polyhedra. This time bound is linear in the number of constraints. However, in that
paper the question of the complexity of the lower-dimensional strata of contact space was
left open. It turns out that the key question concerning the numbers of lower-dimensional
strata is the complexity of the sub-graph induced by a planar contact between a pair of
the faces of the polyhedra. The size of this sub-graph depends linearly on the number of 0-
dimensional strata, which correspond to the combination of a planar face-to-face contact
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and 3 independent simple contacts between those faces. The number of these latter is
exactly the question addressed in the present paper.

Given any fixed triple of independent simple contacts, it is known that there cannot
exist more than 4 relative configurations of P and @ which satisfy all three of them (see

e.g. [SS83]; in fact, [LS87] conjecture that in fact there can be at most 2 such configura-

tions). Therefore, a trivial upper bound on K(m,n) is 4(2’§m) € O(m3n3). However this

bound, which is cubic in the number of simple contacts, holds also for non-convex or even
disjoint polygons, and it is intuitively clear that convexity should substantially reduce the
number of possible critical configurations.

The next section describes some empirical evidence that indeed for specific sequences
of pairs of real convex polygons the number of critical configurations grows considerably
slower than the cubic bound. This evidence has motivated the search for a rigorous
theoretical upper bound, which is the subject of section 3.

2 An algorithm for computing critical configurations

In ([PT91]), we described an algorithm for computing all the critical configurations which
may arise for a specific pair of input polygons. That algorithm uses what is essentially
a brute-force generate-and-test approach, in that in some sense it considers all possible
triples of single contacts and determines whether they are simultaneously satisfiable. It
uses pair-wise distance constraints between the contacts to prune from the tree of possi-
bilities those triples which need not be considered; each triple which passes the distance
constraints is then tested by solving explicitly for a rigid transformation which would bring
one polygon into contact with the other such that each of the three contacts is made. The
details of the algorithm and of its implementation are described in [PT91]; here we simply
wish to quote the main empirical results from that report.

Critical configurations may be classified into different types, depending on the types
of the simple contacts which they satisfy. First of all, we distinguish among the following
three configuration types:

type A: 1 vertex—vertex contact, 1 simple contact
type B: 1 edge-edge contact, 1 simple contact
type C: any 3 simple contacts NOT satisfying the definition of type A or type B

Note that types A and B are indeed configurations satisfying 3 simple contacts, but which
have an additional constraint concerning which sets of contacts may constitute such a
configuration. For example, to constitute a type A configuration, two of the contacts
must involve the same vertex, and the edges of those two contacts must share a common
endpoint. We have been primarily interested in establishing non-trivial upper bounds for
the number of type C critical configurations which may occur. This is because the numbers
of the other two types are easier to predict; indeed, an immediate trivial upper bound
for both types is O(m?n2). It is also useful to classify critical configurations according
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to the types of the simple contacts they contain. There are four possibilities: of the
three contacts, either 0, 1, 2, or 3 may be of type II (edge—vertex), the others being of
type I (vertex—edge). We denote these possibilities as case 0, case 1, case 2, and case 3,
respectively. Note that due to the intrinsic symmetry of the problem, the complexity of
the case 0 configurations is the same as that of the case 3 configurations, but with the
roles of P and @) reversed; the same symmetry exists between cases 1 and 2.

We now turn to describing some results obtained from an implementation of this
critical configuration generating algorithm. The algorithm has been implemented in the C
language on a Sun workstation. The program takes as input a pair (P,Q) of convex
polygons and proceeds to compute the type C critical configurations of those polygons.
Because of the symmetry noted above between case 0 (resp. case 1) critical configurations
and case 3 (resp. case 2) critical configurations, we have not bothered to implement the
latter two cases. The output consists of a list of pairs, each containing a simple contact
triple and a transformation; each transformation when applied to polygon P yields a
configuration in which P contacts @ in exactly the ways specified by the corresponding
triple.

To facilitate the input and output to the program, a graphical interface has been con-
structed. The user can input the pair of polygons by drawing them on a graphics window
on the screen, and then can browse through the resulting list of critical configurations.
Each configuration is displayed by redrawing the polygon P superimposed on Q, so that
it is possible to verify that the contacts are being made. In addition, for each run of the
program some statistics are printed. An example of these is as follows:

Number of possible simple contacts: 70
<applying distance constraints>

0f 54740 possible triples of contacts:
906 are feasible and 53834 are infeasible.

<solving for critical configurations>

93 type-C critical configurations found:
21 case-0, 72 case-1

In this example, P was a convex polygon with 5 vertices and Q had 7. Thus the number

of simple contacts was 2 x 5 x 7 = 70. The number of a priori possible triples was

therefore (730), which is 54740. By applying the distance constraints (aluded to above

and described in detail in [PT91]), the number of these which needed to be examined
further was 906, or about 1.7%. Of these, only 93 turned out to yield transformations
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which really placed P on Q in such a way that the three contact constraints were met.

Experience with the output of the program reveals that the largest number of criti-
cal configurations tends to be produced when the two input polygons are approximately
regular, and have the same radius and number of vertices. To give an idea of how many
critical configurations this situation may yield, the following table has been culled from
program output:

SUMMARY of approximately-regular polygon data

K(P,Q)
n case-0 case-1 total K/n"2 K/n"3 K/n"4
4q 4 26 30 1.88 0.469 0.117
1) 15 90 105 4.20 0.840 0.168
6 85 232 317 8.81 1.468 0.245
7 185 297 482 9.84 1.405 0.201
8 287 829 1116 17.44 2.180 0.272
9 430 852 1282 15.83 1.759 0.195
10 - 662 1281 1943 19.43 1.943 0.194
11 956 2220 3176 26.25 2.386 0.217
12 1567 3329 4896 34.00 2.833 0.236
16 2850 6225 9075 35.45 2.216 0.138
20 7979 19814 27793 69.48 3.474 0.174

Each row of the table corresponds to a separate run of the program. The quantity n refers
to the number of edges in each of the polygons; the next three columns give the number of
critical configurations which were computed for that run. Each row for n < 16 is the data
from the run which, out of three or four runs for that value of n, yielded the highest number
of critical configurations. (The runs for n = 16 and n = 20 were performed only once,
since they each required over an hour of computer time.) The rightmost three columns
compare the critical configuration totals with the second, third, and fourth powers of n,
in order to give an idea of the growth rate of the critical configuration count. Although
it is of course impossible to make any definite conclusions based on such sparse data, it
certainly seems plausible that the number of critical configurations grows faster than n3,
and possibly as fast as n*. Similarly, it seems unlikely that the growth rate is any larger
than n*. Thus we conjecture that K(n,n) € O(n*), which is quadratic in the number of
constraints.

This (admittedly weak) empirical evidence that K (m,n) grows considerably slower
than the trivial cubic bound O(m3n?) has led us to try to establish an upper bound closer
to the quadratic one. The results of this effort will be described next.
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3 An upper bound on K(m,n)

In this section we present a proof of an upper bound on K(m,n) which is somewhat better
than the cubic trivial bound, although not as good as the quadratic bound conjectured in
section 2 above. Specifically, we show that

K(m,n) € O(m?n® + m3n?).

For technical reasons, we will assume throughout this section that neither of the two
polygons P and @ contains a pair of parallel edges. In particular, this assumption implies
that both polygons are “strictly” convex, in the sense that no 3 consecutive vertices are

. collinear.

The proof of the upper bound relies on a geometric analysis of the set of contact
manifolds. Given any two convex polygons P and @, a fixed vertex v € Vp, and a fixed
edge e € Eq, consider the set of relative configurations satisfying the simple contact (v, e).
This is a two-dimensional set, isomorphic to S; x (0,1), which can be parametrized as
follows. Let ¢ € Vi be one of the two endpoints of the edge e, and let # be any direction
fixed relative to P. A configuration ¢ on the contact manifold of (v,e) may now be
expressed by a pair (d,a) € Rt x S, where d is the distance from ¢ to v and o is the
angle between # and the edge e, considered as oriented from g to the other endpoint of e.

The analysis proceeds by considering the form of the intersections of the remaining
contact manifolds with the manifold of (v, e). Each such intersection is a one-dimensional
set represented by a small number of curve segments in d — o space. Any critical config-
uration which satisfies the contact (v, €), along with two other contacts, will therefore be
represented by the intersection of two such curve segments. In the following sequence of
claims, we give an upper bound on the number of such pairwise intersections. From this
the overall bound follows by summing over all contacts (v, €).

In each of the following claims, let v, e, d, and a be defined as above.

Claim 1 The set S of relative configurations satisfying both the simple contact (v, e) and
any additional simple contact (of either type) simultaneously is a one-dimensional set
consisting of at most 4 connected components.

Proof: That S is one-dimensional is obvious, since with two contacts satisfied only one
degree of freedom remains from the original three.

Now suppose that the second contact is also of type I, i.e. that it has the form (v, €).
Let I be the line segment joining the two vertices of P involved in the contacts, and let ¢
be a relative configuration which satisfies both contacts such that the vertices v and v’
lie on the interiors of the respective edges e and ¢’, and let @ be the orientation of ! at c.
Because we have assumed that @ has no pair of parallel edges, as the orientation of { varies
within a sufficiently small neighborhood of 6 there exist, by continuity, configurations also
satisfying both contacts. Therefore the extremal points of S can only occur in double-
contact configurations in which one of the vertices touches one of the endpoints of its
corresponding edge. For each of the four possible vertex—endpoint pairs, at most two such
configurations may exist (corresponding to the possible intersections of one edge with



the circle of diameter length(l) centered at the endpoint of the other edge). Thus there
are at most 8 extremal points possible, which implies that § has at most 4 connected
components, as claimed.

In the case that the second contact is of type II, i.e. has the form (€,v’), a similar
continuity argument shows that again extremal points of S occur only when a vertex
touches an edge endpoint; again, this yields at most 8 extremal points. o

Considered as a subset of the contact manifold of (v,e) parametrized by d and a,
each connected component of an additional simple contact appears as a continuous curve
segment. In addition, we have

Claim 2 Let c be a simple contact NOT satisfying either:
e c= (v',e); or
e c=(¢,v') and v € é(¢') and v’ € §(e),

where 6(e) denotes the set of two endpoints of the edge e. Then each of the curve seg-
ments representing a component of the additional simple contact ¢ may be ezpressed as a
continuous function of the form d = d(c).

Proof: This is equivalent to the assertion that, for any fixed value & = ag, there exists
at most one configuration satisfying both (v,e) and c at that angle. This follows directly
from our assumption that the polygons have no parallel edges. o

The exclusion of the two degenerate cases in claim 2 will not affect our final bound.
The second case can only yield critical configurations of type B, for which we already have
a trivial bound of O(m?n?), and a bound of O(m3n?) for configurations arising from the
first degenerate case is easy to obtain, since both v and v’ are restricted to lie on the same
edge e.

Claim 3 Any two contact curve segments may intersect in at most 4 points in d—a space.

Proof: An intersection of two additional curve segments with the manifold of (v,e)
represents a critical configuration satisfying the simple contact (v,e) and the two simple
contacts corresponding to the curve segments. As mentioned above in the introduction,
it is known ([SS83]) that for any fixed triple of contacts at most four configurations exist
which satisfy them, which establishes the claim. o

Now consider a set of all the contacts which involve a particular fixed vertex, i.e. a
set of the form {(v',¢’)|¢' € Eq} (type I contacts) or {(¢’,v')|e’ € Ep} (type II contacts).
The intersection of each such “vertex-polygon” contact set with the manifold of (v,e)is a
set of curve segments in d — a space. We will refer to such a set in the sequel as a chain.
Because of claim 1, the number of connected components in each chain is at most 4 times
the number of simple contacts in the “vertex-polygon” contact set; thus a chain of type I
simple contacts has O(n) connected components and a chain of type II simple contacts
has O(m).

Our next goal is to establish an upper bound on the number of intersections between
any given pair of chains. For this purpose it would be convenient if each chain were also a
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(not necessarily continuous) function d = d(e). Unfortunately, as can be seen in figure 1,
for the same relative orientation of the two polygons it is possible that double contact
configurations exist which satisfy both the contact (v, e) and a contact of the chain at two
distinct values of d, d, and d;. In these cases, the chain cannot be described as a function.
Nevertheless, we have

Claim 4 For any fized value ag and any particular chain C, the line a = ag may inter-
sect C in at most 2 points in d — a space.

Proof: Recall that a chain is composed of a set of segments, each representing a connected
component of the contact of the vertex corresponding to the chain with one edge. From
claim 2, the number of intersections of any single contact segment with the line & = oy is
at most one; thus we just need to determine the number of segments which the line may
cross. If C is a chain of type I segments, let v/ € Vp denote the vertex of P involved in the
contacts of C, and let [ be the line swept by v’ as P moves with the fixed orientation ag
with v sliding along e (see figure 2). Ignoring possible contacts of v with vertices of Q
(which correspond to type A critical configurations), we can see that / can intersect at
most 2 edges of @, because of our assumption that @ is strictly convex. This establishes
the claim for chains of type I segments. Similarly, if C is a chain of type II segments,
the strict convexity of P implies that at most two of its segments may cross any line of
fixed a. o

It can be seen that, given the condition described in claim 4, any connected component
of a chain may consist of at most 3 maximal functional sections. Thus we may artificially
split each component into these sections; the splitting points, if any, will be those of
minimum and maximum « along the component. Once this is done, the resulting set of
connected components of the chain may be partitioned into two sets in such a way that
the curves in each set do indeed form a function of a (this also follows from claim 4).
To avoid the proliferation of unnecessary terminology, in the sequel we will continue to
use the term “chain” to refer to a set of curve segments in one of these partitions of the
original chains.

In summary, within the contact manifold of a fixed type I contact (v, €) parametrized
by & and d, for each additional vertex of P (respectively Q) we obtain two chains, each
of which is a function of o composed of at most O(n) (respectively O(m)) connected
components. We now define a breakpoint of a chain as either an extremal point of one
of the connected components of the chain or a point at which two simple contact curve
segments of the chain meet. Clearly the number of breakpoints of a type I (respectively
type II) chain is also in O(n) (respectively O(m)).

Claim 5 Given a chain C1(a) which has k breakpoints and another chain Ca(a) with 1
breakpoints, the intersection of C1, C,, and the contact manifold of (v, €) is a finite point
set of size O(k + 1).

Proof: Let {s;},i = 1,...,k denote the sequence of values of a corresponding to the
breakpoints of C1, and let {t;},7 = 1,...,I be the sequence of a values of the breakpoints
of C. Since each chain is a function of @, we may assume that each of these breakpoint



sequences is sorted in order of increasing a. (Strictly speaking, this is incorrect, since
the range of a is circular. However, by breaking the circle at some arbitrary point, e.g.
at a = 0, and splitting any chain components which cross that point into two, we can
impose a strict ordering among angles and this increases the number of chains by at
most two.) By definition, between any two adjacent breakpoints C1(si) and Cy(si41), the
chain C; either has a portion of a single simple contact curve segment or is empty. (The
same is true of C for its breakpoints.)

Now consider the sorted sequence of values of @ obtained by merging the sequences {s:i}
and {¢;}. Within the interval defined by any two consecutive values in this merged se-
quence, the number of intersections between the chains is at most 4 by claim 3. Since the
number of such intervals is k + ! — 1, the result follows. )

We are now ready to establish our

Main Result K(m,n)€ O(m?n® + m3®n?).

Proof: We derive a bound for each type of critical configuration separately. First, con-
sider the critical configurations consisting of three type I contacts, i.e. in the language of
section 2, those of case 0. There are mn contacts of type I. We have seen that for each
such contact, the number of functional “chains” representing “vertex—polygon” contacts
is linear in the number of such contacts, which is O(m) for the case of additional type I
contacts; also, all critical configurations are represented by intersections between contact
functions. Furthermore, the number of intersection points between any fixed pair of type I
contact functions is O(n), because that is a bound on the number of breakpoints in each
and by claim 5. Summing over all type I contacts and over all possible pairs of chains
from each, we get a total of O(mn(rg)n) = O(m>n?) critical configurations of case 0.

Similarly, for case 2 critical configurations we have mn type I contacts, each of which
has O(n) chains of type II, and each chain has O(m) breakpoints; this gives O(mn (g) m) =
O(m?n3) critical configurations of case 2.

Cases 1 and 3 are symmetric to cases 2 and 0, respectively, with the roles of P and Q
reversed. Thus we can simply exchange m and n in the above analysis, and this yields the
bounds O(m>n?) for case 1 critical configurations and O(m?2n3) for those of case 3. Hence
the overall bound for critical configurations of all types is O(m?n3 + m3n?). o

4 Conclusions

We have presented the best asymptotic bound known to us on the number of ways in which
a convex polygon with m vertices may contact another with n vertices in such a way that
three independent simple contacts are made between the two. The proof technique relies
on considering a two-dimensional subset of relative configurations in which one contact is
satisfied, and using simple geometry arguments to derive bounds on the number of ways
pairs of additional contacts may intersect simultaneously with such a subset. The key idea
lies in claim 4, which is where we exploit the convexity of the polygons.
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It is an open question whether the bound presented is tight. The empirical evidence
given in section 2 suggests that a better bound should be possible. It is interesting to note
that the distance constraints used by the algorithm briefly described in that section are
very efficient in rejecting most triples of contacts from further consideration. Accordingly
it would be interesting to devise an upper bound whose proof in some way exploits these
same constraints. Although we have made some effort in this direction, as of this writing
we have not been able to obtain a non-trivial bound in this way.

Another direction for future work is in the area of algorithms. Following the lines of
the proof in section 3, one approach would be to explicitly construct the contact chains for
each simple contact and to use a sweepline algorithm to find their intersections; this could
probably be done in time O((m®n? + m?n3)log(mn)). However this is little better than the
trivial cubic bound attained by the brute-force algorithm, and it is possible that a better
upper bound on the number of critical configurations would yield a better algorithmic
approach as well. A more general question is that of algorithms for constructing the set of
strata of all dimensions, either for just a pair of convex polygons or for the stratification of
the contact space of two convex polyhedra. Again, some kind of sweeping plane approach
suggests itself, where the event queue would be the orientations at which contact space
vertices (i.e. critical configurations) occur.
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