Tight Bounds for Edge Guards in Monotone Polygons
and Rectilinear Monotone Polygons

Iliana Bjorling-Sachs and Diane L. Souvaine*
Department of Computer Science, Rutgers University, New Brunswick, New Jersey 08903
email: bjorling@paul.rutgers.edu, dls@cs.rutgers.edu

Extended Abstract

1 Introduction

The original art gallery problem asks “What is the
minimum number of guards needed to watch every
point inside an art gallery”. The art gallery here is
viewed as a simple polygon and the guards as points
inside the polygon. A point z is visible to a guard y as
long as the line segment Ty does not intersect the ex-
terior of the polygon. The polygon is covered if every
point inside it is seen by at least one guard. Chvatal
showed that no polygon with n vertices requires more
than |n/3| guards and that polygons exist for which
this number of guards is necessary [2]. Much at-
tention has subsequently been devoted to variations
of the original art gallery problem and many results
have been obtained [4],[6]. One variation which has
remained unsolved is one where guards are allowed
the freedom to move along individual edges of the
polygon. Guards of this type are called edge guards.
For edge guards the notion of weak visibility is used.
A point inside the polygon is considered visible as
long as it is seen by some guard at some point during
the walk along the edge. Here we show that when
the gallery is restricted to the shape of a monotone
polygon [(n — 2)/5] is a tight bound on the number
of edge guards needed. For a rectilinear monotone
polygon the tight bound is [(n — 2)/6] edge guards.
The lower bounds are given by means of examples in
section 2 and proofs of the upper bounds are given
in sections 3 and 4. The proofs are constructive and
lead to algorithms for placing the guards in time lin-
ear in the number of vertices. Algorithmic aspects
are discussed in section 5.

2 The lower bounds.

For a monotone polygon the lower bound is
[(n — 2)/5]. Starting with the simplest polygon pos-

*Supported in part by National Science Foundation Grants
#CCR-88-03549 and #CCR-91-04732.

sible, the triangle, exactly one edge guard is clearly
needed. Increasing the number of vertices of the poly-
gon, a second guard is needed as soon as the size
reaches eight vertices and a third guard when the size
reaches thirteen vertices. A polygon with eight ver-
tices requiring two edge guards is shown in figure 1
and a polygon with thirteen vertices requiring three
edge guards is shown in figure 2. The polygon in

Figure 1: A polygon with 8 vertices requiring 2 edge
guards.

Figure 2: A polygon with 13 vertices requiring 3 edge
guards.

figure 2 generalizes to a polygon with k groups of
five vertices in addition to the original eight vertices
requiring k + 2 edge guards (see figure 3). This es-
tablishes the lower bound for monotone polygons.
For rectilinear monotone polygons the lower bound
is [(n — 2)/6]. Figure 4 shows a polygon with ten ver-
tices, which requires two edge guards. This polygon

93

Tight Bounds for Edge Guards in Monotone Polygons
and Rectilinear Monotone Polygons

Iliana Bjorling-Sachs and Diane L. Souvaine*
Department of Computer Science, Rutgers University, New Brunswick, New Jersey 08903
email: bjorling@paul.rutgers.edu, dls@cs.rutgers.edu

Extended Abstract

1 Introduction

The original art gallery problem asks “What is the
minimum number of guards needed to watch every
point inside an art gallery”. The art gallery here is
viewed as a simple polygon and the guards as points
inside the polygon. A point z is visible to a guard y as
long as the line segment 7 does not intersect the ex-
terior of the polygon. The polygon is covered if every
point inside it is seen by at least one guard. Chvatal
showed that no polygon with n vertices requires more
than |n/3| guards and that polygons exist for which
this number of guards is necessary [2]. Much at-
tention has subsequently been devoted to variations
of the original art gallery problem and many results
have been obtained [4],[6]. One variation which has
remained unsolved is one where guards are allowed
the freedom to move along individual edges of the
polygon. Guards of this type are called edge guards.
For edge guards the notion of weak visibility is used.
A point inside the polygon is considered visible as
long as it is seen by some guard at some point during
the walk along the edge. Here we show that when
the gallery is restricted to the shape of a monotone
polygon [(n — 2)/5] is a tight bound on the number
of edge guards needed. For a rectilinear monotone
polygon the tight bound is [(n — 2)/6] edge guards.
The lower bounds are given by means of examples in
section 2 and proofs of the upper bounds are given
in sections 3 and 4. The proofs are constructive and
lead to algorithms for placing the guards in time lin-
ear in the number of vertices. Algorithmic aspects
are discussed in section 5.

.2 The lower bounds.

For a monotone polygon the lower bound is
[(n — 2)/5]. Starting with the simplest polygon pos-

*Supported in part by National Science Foundation Grants
#CCR-88-03549 and #CCR-91-04732.

sible, the triangle, exactly one edge guard is clearly
needed. Increasing the number of vertices of the poly-
gon, a second guard is needed as soon as the size
reaches eight vertices and a third guard when the size
reaches thirteen vertices. A polygon with eight ver-
tices requiring two edge guards is shown in figure 1
and a polygon with thirteen vertices requiring three
edge guards is shown in figure 2. The polygon in

Figure 1: A polygon with 8 vertices requiring 2 edge
guards.

Figure 2: A polygon with 13 vertices requiring 3 edge
guards.

figure 2 generalizes to a polygon with k groups of
five vertices in addition to the original eight vertices
requiring k + 2 edge guards (see figure 3). This es-
tablishes the lower bound for monotone polygons.
For rectilinear monotone polygons the lower bound
is [(n — 2)/6]. Figure 4 shows a polygon with ten ver-
tices, which requires two edge guards. This polygon

93

94

Figure 3: A polygon with 5k + 8 vertices requiring
k + 2 edge guards.

Figure 4: A rectilinear monotone polygon with 10
vertices requiring 2 edge guards.

is easily generalized to a polygon with n vertices re-
quiring [(n — 2)/6] edge guards. This establishes the
lower bound for rectilinear monotone polygons.

3 The upper bound for mono-
tone polygons.

The upper bound for monotone polygons is
[(n —2)/5]. Let P be a monotone polygon with n
vertices. The triangulation of P yields n — 2 trian-
gles. We show that these triangles can be grouped
in such a way that every group is covered by one
edge guard and every group except one either con-
tains at least five triangles or contains four triangles
with a following group containing at least six trian-
gles. Since there are at most [(n — 2)/5] such groups,
this same number of guards is sufficient to cover P.
P is triangulated using the algorithm by Garey,
Johnson, Preparata and Tarjan for monotone poly-
gons [3]. Assume without loss of generality-that P is
monotone in the y-direction. The algorithm processes

‘the vertices in order of descending y-coordinate. Pro-

cessed vertices are kept on a stack as long as they
remain vertices of the still to be triangulated part of
P. Triangles are created by internal diagonals drawn
from the vertex being processed to vertices on top of
the stack, which is then popped. These triangles are

of two types. Cross-iriangles have two vertices on one
chain and the third vertex on the opposite chain and
thus stretch across the polygon from one side to the
other. Side-triangles have all vertices on the same
chain and can be said to lie either on the right side or
the left side of the polygon. We make the following
observation regarding the existence of side-triangles:

Observation 1 The eztent in the y-direction of a
side-triangle or group of adjacent side-triangles along
one chain is spanned by a single edge on the opposite
chain.

This follows from the way in which the algorithm
produces the triangles. We group the triangles and
assign the edge guards during the triangulation. As
the diagonals are generated keep a count on the num-
ber of unguarded triangles formed. Each time the
generated diagonal is a cross-diagonal check if this
count is at least five, is so stop and assign a guard.
Since the check is made whenever a cross-diagonal is
generated, at least one and at most five cross-triangles
have been formed since the last stop. The possible
configurations of the unguarded triangles give rise to
a number of cases for the choice of edge guard. The
different cases are divided into five major categories.
Within each category the number of cross-triangles
is the same, but the generated cross-diagonals differ
as does the position of any existing side-triangles. In
each case the guard is chosen in such a way that we
have the following invariant:

Invariant: Following the stop at a cross-diagonal
any side-triangles left unguarded by the newly as-
signed guard lie between the two most recently gen-
erated cross-diagonals and on the same side as the
bottom-most vertex.

All the cases with there associated guards are de-
scribed in the complete version of our paper. For the
most part the choice of guard is straightforward. As
an example we show a case in the category where
one cross-triangle is present. Assume that the cross-
triangle has one vertex l; on the left chain and two
vertices r; and r; on the right chain, i.e. the cross-
diagonals are l;r; and l;rx. There must be at least 4
side-triangles present or we would not have stopped
to assign a guard.

Case 3.0.1 Cross-diagonals are l;r; and liri.. Vertez
l; lies below r; and .

It follows from the way in which the algorithm gen-
erates the diagonals that if /;r; is a cross-diagonal, no
vertex on the left chain can lie above /; and below r;

Figure 5: A guard on edge l;_1l; sees all triangles.

(see figure 5). Thus no edge on the right chain spans
the y-extent of the area between l;_; and ;. It fol-
lows from the invariant and observation 1, that no
side-triangles were left unguarded when a guard was
assigned to the group above /;r;. All unguarded side-
triangles must lie on the right chain between r; and
rx. A guard assigned to edge I;_;l; sees all triangles
and no side-triangles above l;r; are left unguarded.©O

A few cases require a more thorough exploration of
the relative positions of the vertices. An example of
this is the following case in the category where four
cross-triangles are present. The four cross-triangles
are formed by five cross-diagonals. The endpoints
of these may be distributed with one, two or three
endpoints on one chain and the remaining five, four or
three endpoints on the opposite chain. Consider the
case when two endpoints /; and l; lie on the left chain
and the four endpoints on the right chain are in order
Tk, Tl, Tm and r,. Let three cross-diagonals emanate
from [; and two from l;, i.e. the cross-diagonals are
litk, Limy, litm, ljTm and ljry.

Case 3.0.2 Cross-diagonals are liry, liry, litm, liTm
and ljr,. Vertez l; lies below rp,.

As in the previous case, vertex /;_; cannot lie be-
low r; and no unguarded side-triangles lie above [;7;.
Furthermore, vertex I; must lie above r, since other-
wise lir, would be a cross-diagonal instead of I;rpm.
Thus no edge on the left chain spans the distance
between r,, and r, and no side-triangles can lie be-
- tween these two vertices on the right side. If two
side-triangles are present above /;r, the count would
‘reach five when this diagonal was generated and the
stop made there. If no side-triangle is present above
liTm, the count would still be four at cross-diagonal
ljra. Therefore exactly one side-triangle is present
above ljrm. This single side-triangle may lie between
% and r;, between r; and r,, or between /; and lj.

If the side-triangle lies between ri and r; (see figure
6), a guard on edge riry, sees all triangles.

Figure 6: A side-triangle lies between r; and .
If the side-triangle lies between r; and r, (see fig-

ure 7), no single edge is guaranteed to see all triangles
in every situation. Edge l;_,[; certainly sees the side-

Tia

Figure 7: A side-triangle lies between r and rp,.

triangle and the three topmost cross-triangles. How-
ever part of the fourth cross-triangle ljr,r, may be
hidden from view. Similarly edge I;l; sees all cross-
triangles, but not necessarily the side-triangle. If

“Ii;1j, 7 forms a left turn, edge l;_;l; sees all trian-

gles. I [;,l;,ry forms a right turn but },rpy,r4;
forms a left turn, a guard on edge /;I; sees all trian-
gles. If both [;,l;,r, and I;, rp, 1143 are right turns,
but rn, T, 71 forms a left turn, a guard on edge ITI4+1
sees all triangles. Finally if all the above are right
turns, a guard on edge l;_;l; sees all triangles. This
is 80 because with cross-diagonal l;r; present, r;, v

96

and l;_; must form a right turn.

If the side-triangle lies between /; and I; (see figure
8), there is again no single edge guaranteed to see
all triangles in every situation. If l;,;,r, forms a

Figure 8: A side-triangle lies between /; and ;.

left turn, a guard on edge l;_;l; sees all triangles. If
l;,1j, 7 forms a right turn but ry, l;, l;4+, forms a left
turn, a guard on edge 7Ty, sees all triangles. If both
i Ij, rn and v, I, li41 are right turns, but =, l;, lj is
a left turn, a guard on edge l;;1l; sees all triangles.
Finally if all the above are right turns, a guard on
edge edge 7,1y sees all triangles.O

Finally it is possible that the group of triangles
for which a guard is sought cannot be covered by
any edge above the cross-diagonal where the stop was
made. Consider a subcase of the following case, where
again exactly four cross-triangles are present and the
two vertices on the left chain are /; and I;.

Case 3.0.3 Cross-diagonals are iy, liri, limy, litm
and ljr,. Vertez l; lies between v and ry.

If in addition vertex I; lies avbove 7; and a side-
triangle is present between r; and r,,, we have a sub-
case where it is possible that no edge above ljr, can
see more than four triangles (see figure 9). An edge
below I;r, will be used. We show that it is always
possible to choose either an edge from which all the
unguarded triangles above {;r,-can be seen or-an edge
from which the bottom cross-triangle l;, rm, ry is seen
‘and which in addition can be used as guard for the
next group of triangles. In the latter case this guard
is used together with a guard on edge rxr; from which
the top four triangles are seen. Thus as long as the
group below l;r, is not the last group in the poly-
gon, the two guards together cover ten triangles. If

r1+1

Figure 9: No edge above l;r, sees more than four
triangles.

the group below I;r, is the last group of triangles in
the polygon, it may contain less than five triangles.
However, if there are additional triangles below ljr,,
the two guards chosen as above are still within the
[(n — 2)/5] bound. If no triangles lie below I;r, then
ljrn is in fact an edge of the polygon. A guard on
this edge sees all the triangles in the group above.O

The assignment of guards as described by all the
cases in the complete version of our paper ensures
that no more than (n — 2)/5 guards are used when
the number of triangles in the polygon is a multiple of
five. One additional guard is used for any remaining
triangles giving the upper bound of [(n — 2)/5] edge
guards used.

4 The upper bound for recti-
linear monotone polygons

The upper bound for rectilinear monotone polygons
is [(n — 2)/6]. The proof is similar to that for mono-
tone polygons, but the polygon is partitioned into
convex quadrilaterals instead of triangles. These
quadrilaterals are grouped and an edge guard is as-
signed to each group. Taking the place of the triangu-
lation algorithm is Sack’s monotone quadrilateraliza-
tion algorithm {5]. Assume that the polygon is mono-
tone in the y-direction. The algorithm processes the
horizontal edges in order of descending y-coordinate.
Top edges are pushed onto a stack. Quadrilaterals are
created by internal diagonals drawn between bottom
edges being processed and top edges popped off the
stack. A diagonal can itself be treated as a horizon-
tal edge and be pushed onto the stack or become the

next edge to be processed. A complete description
of the algorithm is not given here. We mention only
the following two similarities to the triangulation al-
gorithm. Firstly the generated quadrilaterals are of
two types. Cross-quadrilaterals have vertices on both
chains and stretch from one side to the other. Side-
quadrilaterals have all vertices on the same chain and
lie on the right side or the left side of the polygon.
Secondly the observation below follows from the way
in which the quadrilaterals are produced.

Observation 2 The eztent in the y-direction of
a side-quadrilateral or a group of adjacent side-
quadrilaterals along one chain is spanned by a single
edge on the opposite chain.

The quadrilaterals can be grouped into groups of
three with one edge guard assigned to each group.
The guard is always assigned in such a way that we
have the following invariant:

Invariant: Following the stop at a cross-diagonal
any side-quadrilaterals left unguarded by the newly
assigned guard lie on the same side as the bottom-
most vertex and immediately above it.

Each time a cross-diagonal has been generated and
the number of unguarded quadrilaterals above it is
at least three, we stop and assign a guard. The
cases arising from the possible different configura-
tions of quadrilaterals are divided into three cate-
gories, with category i containing the cases where i
cross-quadrilaterals are present. In all the cases the
choice of guard is straightforward. An illustration is
the following case where two cross-quadrilaterals are
present. Assume the three generated cross-diagonals
have two vertices /; and l; on the left chain and
the remaining four vertices r, r;, #m and r, on the
right chain. At most one side-quadrilateral can lie
above the next to last cross-diagonal or we would have
stopped when it was generated.

Case 4.0.4 Cross-diagonals are l;ry, lir,, and liry.
Vertez l; lies between r; and 1.

Side-quadrilaterals are possible between vertices
and 7, between 4; and l; and between r,, and r,
(see figure 10). As noted above at most one side-
‘quadrilateral lies between 7 and ;. A guard on edge
riTm sees this quadrilateral, any quadrilaterals be-
tween l; and l;, the two cross-quadrilaterals and at
least one of the quadrilaterals that may lie between
Tm and r,. Any additional quadrilaterals between r,,
and r, are left to the next guard assignment.O

Figure 10: At most one quadrilateral lies between r;
and 7.

For rectilinear monotone polygons there is no coun-
terpart to the case where for monotone polygons we
need to assign two guards that together cover ten tri-
angles. Instead one guard is always assigned for each
group of at least three quadrilaterals. Since the num-
ber of quadrilaterals in a polygon with n vertices is
(n — 2)/2, this ensures that no more than (n — 2)/6
guards are used when the number of quadrilaterals is
a multiple of three. With one additional guard as-
signed to any remaining quadrilaterals the number of
guards is at most [(n — 2)/6].

5 Algorithmic aspects

The proofs in sections 3 and 4 use existing algorithms
for partitioning the polygon. These algorithms are
modified to enable them to assign edge guards.

The main modification is the addition of a case
statement, where each case results in the output of
an edge guard. We also include a count, which keeps
track of the number of unguarded triangles or quadri-
laterals above the most recent cross-diagonal. The
case statement is run through each time the count
reaches five or three, respectively.

To distinguish between the cases we need to know
what the configuration of the currently unguarded
triangles or quadrilaterals looks like. Specifically we
need to know the vertices of the cross-triangles or
cross-quadrilaterals, the number of side-triangles or
side-quadrilaterals below each such vertex and the
generated cross-diagonals. Therefore where the orig-
inal algorithm outputs a cross-diagonal the modified
algorithm instead stores this diagonal in an array CD.

97

98

The endpoints are also stored in two separate arrays
L and R. In the algorithm for rectilinear monotone
polygons L and R also contain vertices that are not
endpoints of cross-diagonals, but which lie on a cross-
quadrilateral. Where the original triangulation algo-
rithm outputs a diagonal with both endpoints on the
same chain, the modified algorithm increases by one a
count of the number of side-triangles and remembers
the top endpoint of the diagonal. In a collection of
adjacent side-triangles the last diagonal to be gener-
ated has as top endpoint a vertex on a cross-triangle.
Once a cross-diagonal has been generated below this
vertex, the count is stored with the remembered ver-
tex and added to the count of unguarded triangles
before being reset to 0. A similar process works for
side-quadrilaterals. Since the information for a par-
ticular group is no longer needed after a guard for the
group has been assigned, all the arrays are of constant
size.

Checking the cross-diagonals in the array CD
against those present in a particular case takes con-
stant time. So does checking the number of vertices
in L and R, making any needed comparisons between
these vertices and looking up the number of side-
triangles or side-quadrilaterals below a vertex. Since
there are a constant number of cases, it takes con-
stant time to output one edge guard once the diag-
onals for the group have been generated. Both the
triangulation algorithm and the quadrilateralization
algorithm take O(n) time to generate all the diago-
nals, where n is the number of vertices. The number
of edge guards assigned is also O(n). With constant
time taken by the assignment of each guard, total
time taken is O(n).

References

[1] Aggarwal, A. “The Art Gallery Theorem: Its
Variations, Applications and Algorithmic As-
pects,” Ph.D. thesis, Johns Hopkins University,
1984.

[2] Chvatal, V. “A Combinatorial Theorem in Plane
Geometry,” J. Combinatorial Theory Series B 18
(1975), 39-41.

- *[3] Garey, Johnson, Preparata and Tarjan, “Trian-

gulating a Simple Polygon,” Info. Proc. Letters
7 (1978), 175-180.

[4] O’Rourke, J. “Art gallery problems and algo-
rithms,” Oxford University Press (1987).

[5] Sack, J.R. and Toussaint, G. “Guard Placement
in Rectilinear polygons,” Computational Mor-
phology (1988), 153-175.

[6] Shermer, T. “Recent Results in Art Galleries,”
Simon Fraser University Technical Report, Oc-
tober 1990.

