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1 Introduction

Projection and the projected images often play important roles in algorithms for computational
geometry. Let S be a subdivision of R? into n convex regions. In this paper, we investigate
the complexity of the image Pry(S) of the (d - k — 1)-skeleton of S orthogonally projected into
a (d — k)-dimensional subspace.

A typical application is the design of data structures for point location in a subdivision of
a space [Co, DL, PT, THI]. The efficiency usually depends on the complexity of the images
of the subdivision projected into lower-dimensional spaces. In the three-dimensional case, two
data structures for locating a point in a convex subdivision S are known.

One has a query time of O(logn), and needs the same complexity for the space as for the
image Pry(S) of S projected onto a plane [THI). The other has a query time of O(log? n), but
reduces the space complexity to O(Pry(S)log?n) [PT]. Naturally, the complexity of Pry(S) is
the same as the number K of vertices in S. In order to compare these two methods, we must
estimate the complexity of Pri(S). If we estimate the complexity of Pry(S) with respect to
K, it can be §(K?). Since K is 6(n?), a naive upper bound of Pry(S) is O(n*) faces. On the
other hand, if we estimate Pr(S) with respect to n, it is not trivial to construct a subdivision
$ such that Pr;(S) contains more than f(n?) faces.

In this paper, first we show that the complexity of the projected image Pry(S) is 8(n3) for
a three-dimensional subdivision S, and generalize the result to higher-dimensional cases.

In the three-dimensional case, the problem is also related to the visualization of a convex
subdivision of three-dimensional space. This problem is interesting, since a 3D-Voronoi dia-
gram, which is a typical example of convex subdivision, is a popular tool for simulating objects
in nature. One natural method of realizing the above visualization is to animate of Pry(S) by
rotating the projection plane. We show a 6(n*) bound for the number of topological changes of
the projectied image if a three-dimensional subdivision is rotated about a line in the projection
plane.

2 Three-Dimensional Case

Let S be a convex subdivision of three-dimensional space into n polytopes. The number of
edges in S is denoted by K. Pry(S) (Pr(S) for short) is the projected image of the 1-skeleton
of S onto a plane H.

Theorem 2.1 The number of vertices in Pr(S) is O(nK).

Proof The regions are numbered as Q; for i = 1,2,..,n. For each region Q; in S, the boundary
of the convex hull of the projected image Pr(Q;) is denoted by C(Q;), and number of edges of
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C(Q:) is denoted by k;. Every edge of C(Q,) is a projection of and edge of Q;, and each edge
contributes to at most two C(Q;), so 17 ki < 2K. For each edge e in S, let H(e) be the
plane containing e and perpendicular to H. Because of the convexity, there exists a region Q
containing e that does not intersect H(e). Apparently, Pr(e) is an edge of C(Q). Therefore,
every projected image of an edge is contained in the convex boundary of a projected image of
a suitable region. Since C(Q;) and C(Q,) intersect at at most 2min(k;, k;) points, there are
at most 23°0._, min(k;, k;) < 2n 37 ki < 4nkK intersections in Pr(S). m]

Corollary 2.2 The number of vertices in Pr(S) is O(n3).

Next, we give the lower bound of the complexity of the projection of the skeleton of a
three-dimensional convex subdivision satisfying the condition that K, the number of edges of
the convex subdivision S, is at least n. We fix a plane H in the space.

Theorem 2.3 There ezist constants c and ¢’ such that for any cn? > K > c'n, there erists a
convez subdivision S satisfying the following conditions: (1) S has n convez polytopes, (2) S
has K vertices in total, and (3) the projection Pr(S) of S on H has O(nkK) vertices.

Proof It suffices to show the lower bound. From the Dehn-Sommerville equation, K < n2.
For a given arbitrary number 18n < k < n?, we set m = k/6n, and s = (n — 2m)/2. It is
easy to see that s > n/3. We consider a circle C on a plane H; parallel to H. Let [ be a
line through the center O; of C perpendicular to H. Let A; denote the set of vertices of a
regular m-gon inscribed into the circle C. Further, we consider a point set B; consisting of s
points on I. We also consider the Voronoi diagram V; of A; U B;. The projection of the cap
boundary of each region of a point of B; in V} is a regular m-gon with center O, which is the
projection of O;. Further, each of these polygons can be transformed into another by a scaling
transformation. If the whole set of B; is close enough to O, the scaling factor is larger than
cos 5~ (and smaller than 1) for each pair.

Next, we consider another plane H, parallel to H, and project A; onto H; to obtain a
point set on the circle C; with center 0,. We rotate these points on C; by an angle = to
obtain a point set A;. We let a point set B; be a translation of B; by the vector 0;0;. The
Voronoi diagram V; of A2 U B, is congruent to V;. However, since the point set is rotated, the
projection of the cap boundary of the region of a point of B; is rotated by I with respect to
the corresponding one in Vj.

Now, we place H; sufficiently far from H;, and consider the Voronoi diagram V of A; U
A2U By U B;. The projection of the cap boundary of the region of a point of B; intersects at
2m points with that of any point of B, Since there are s? pairs of such cap boundaries, the
total number of intersections is at least 2ms? > -};nk.

On the other hand, the Voronoi diagram V has n regions and K = % + O(n) edges. Thus,
we obtain the theorem. o

In the above theorem, we fix the projection plane H. However, more generally, the following
holds: :

Theorem 2.4 There ezists a conver subdivision S of the space into n conves regions such that
its projected image onte any plane has Q(n®) vertices.

The proof is omitted in this version.



3 Rotation and topological change

In this section, we investigate the topological change of Pr(S) when S is rotated about a line.

If the projected image is used for the point location structure, the complexity of the pro-
Jected image, which coinsides the space complexity of the point location structure, should be
reduced as much as possible. If we can cheaply rotate the subdivision, we can find the angle
such that the complexity of the projected image is minimum. Moreover, if we consider the
visualization of an object, we often need to rotate the object and make an animation.

A topological change occurs when three projected edges meets. Since there are k = 0(n?)
edges, a naive bound of the number of topological changes is O(nS).

We say that a rotation is parallel if the rotation axis is parallel to the projection plane.
Otherwise, it is called a skew rotation.

We can prove the following theorem:

Theorem 3.1 The number of topological changes is ©(n*) for a parallel rotation.

Proof First, we prove the upper bound. We assume that the projection plane H is parallel
to the z —y plane. The plane Hg is obtained by rotating H by about the z-axis by an angle 6.
The projection Pry is orthogonal to Hy. Suppose the projected images of three edges e, €3,
and e3 meet at a point po = (2o, Yo, z0) of He. Then, we consider the plane H (zo) intersecting
the z-axis orthogonally at zo. The intersecting points of e;, €3, e3 are located on a line on
H (170).

Let X(S) = {z1,%2,..,2n} be the sorted list of the z-coordinate values of the vertices of
S. We define zo = —00 and zy4; = 00. Let us count the topological changes by using a space
sweep with respect to the z-axis. We consider a sweep plane H(t), which intersects the z-axis
orthogonally at (2,0,0). Let 5(t) be the intersection of S with H(t). Obviously, S(1) is a planar
convex subdivision with O(n) regions; thus it has O(n) vertices. We move the sweep plane
H(t) from t = 7o to t = Tx41, and count the number of colinear triples of the vertices of S(1).
Let z; and z;4; be two consecutive elements of X(S). For any two values ¢ and ¢’ in (zi, Ti+1),
the graph structure of 5(t') is the same as that of S(t). For each triple e;, 3, 3 of edges, there
is at most one t’ such that the points of intersection with H (t') are located on a line. Thus,
at most n® topological changes are found during the sweep from zo = —oo to z;. When the
sweep plane passes through z = z;, k; edges (incident to the vertex corresponding to z;) are
newly cut by the sweep plane. Thus, k;in? triples are newly created. Since "N+ k; = O(n?),
the total number of topological changes is O(n?).

Next, we consider the lower bound. We use the Voronoi diagram V defined in Section 2
and adopt the notations used there. We assume that the distance D between H and H; is
sufficiently large, and that the distance between H; and H; is very small. Let us assume that
the rotation axis @ on H meets the line ! at the origin O. Let I be a line on H orthogonal
to a, such that [ meets [ and o at O. We define a set X of n points on I, such that the
distance between two extremal points of X is 6. Let V be the Voronoi diagram of the point set
AjUA2UB U B,UX. We consider the subdivision S that arises when the plane H is added to
V. Evidently, S is a convex subdivision consisting of O(n) regions. Since H, is far enough from
H, almost all regions of V survive in S (actually, only the lower envelope of V is changed). We
call this part V . There exists a2 maximal angle ¢ such that the topological structure of Pr(V)
is not changed if we rotate it by any angle between —¢ and ¢. This angle ¢ is independent of
the distance D between H and H;. On the other hand, S contains the set £ of n — 1 segments
parallel to @, which are intersections of the plane H and the Voronoi boundary of the points
of X. The maximal distance between them is bounded by 6. We can assume that Dtan¢ > 6.
Then, during the rotation of S from —¢ to ¢, each of the ©(n®) vertices of Pr(V) meets each
of the n — 1 segments of £ at an angle. Thus, there are Q(n*) topological changes. (u]
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Any rotation is written as a product of the three rotations about the Z-axis, y-axis, and z
axis. Obviously, the rotation about z-axis causes no topological change in Pr(S). Thus, a skew
rotation for a given angle is represented as a product of parallel rotations. However, the bound
in Theorem 3.1 may fail for the number of topological changes occurring during a skew rotation
about a fixed axis if we consider the angle as a continuous parameter. In dealing with a skew
rotation, we should consider the intersection of the subdivision with a circular cone instead of
with a hyperplane. Unfortunately, the complexity of an intersection of S with a circular cone
is ©(n?). Therefore, it remains an open problem to obtain a nontrivial bound for the number
of topological changes for a skew rotation.

It may be remarked that if we count the number of possible different topologies with respect
to all three-dimensional rotations (that is, the orthogonal group of the space), the bound is
known to be O(K®) [S]. If we naively substitute K = O(n?) into this, we get a complexity
0(n'?).

4 Higher-dimensional extension

In this section, we investigate convex subdivisions in higher-dimensional spaces and show an
upper bound and a lower bound for the complexity of the projected image.

Let S be a convex subdivision of R? into n polytopes. It is well-known [E] that the worst-
case complexity of S is ©(nl(4+1)/2)). The projection of the (d — k + 1)-skeleton of S onto a
(d — k)-dimensional subspace L is denoted by Pry(5).

A face of § is called facet if it has codimension 1. A face of dimension j is called a j-face.

Any face of Pri(S) is an intersection of projected images of at most d — k faces of S.
The projection is called nondegenerate if there are no degenerations in Pri(S) except those
originally in S. It is easy to observe the following lemma:

Lemma 4.1 The complezity of Pry(S) is asymptotically bounded by the number of vertices in
Pry(S) and the number of original faces if the projection is nondegenerate.

To obtain the upper bound of the complexity of Pri(S), we can assume without loss of
generality that the projection is nondegenerate.
Let f; be the number of faces of dimension i of S.

Theorem 4.2 The complezity of the image Pri(S) of the (d — k — 1)-skeleton of S projected
into an offine subspace of codimension k is O((fa—k—1)/@=*N2(f4_4 41)Ud=R)/2])

Proof Let P be a (d—k+1)-face of S. The boundary B(P) of Pri(P) is a convex polytope
in Rk, Let f be an arbitrary (d — k < 1)-face of S. There exists a hyperplane H, which is
perpendicular to the projection subspace L and contains f. It is easy to see that there exists
at least one (d — k + 1)-face P of S located in one of the half-spaces defined by H. Obviously,
Pr(f) is contained in B(P). In fact, Pr(f) is a facet of B(P). Let f(P) be the number of
facets of B(P). If a facet of B(P) is shared by another polygon B(Q), we erase the facet from
B(P), and reconstruct the polygon from the hyperplanes associated with the remaining facets.
Thus we can assume that the summation of f(P) over all of P is O( fa-k-1)-

Thus, Pry(S) is an arrangement (in R4~*) of f4_34; convex polytopes, and the sum of the
number of their facets is O(f4—x-1). It is known that the complexity of an arrangement of N
convex polytopes with M facets in D-dimensional space is O(N[P/21M|D/2]) [ABE). Thus, we
obtain the theorem. o

As a special case, let us consider Pry(S).



Corollary 4.3 The complezity of Pry(S) is O(n??=3) if d is even, and O(n?9~2) if d is odd.
Moreover, the complezity is O(n?) if d < 4.

This time complexity is better than the naive O(n34-1)) bound by a factor of n? or nd-!.
A naive lower bound of the complexity of Pry(S) is O(n?~1). We give a better lower bound
below: .

Theorem 4.4 The complezity of Pry(S) is Q(nl(34-3)/2)),

Proof Let us consider the moment curve T : z(t) = (¢,12, 3, 1971) of R¥-1. We consider a
set M = {z(n):i=1,2,..n} of (d — 1)n points on I'. We assume that r; < 7; il i < j. The
convex hull of M is denoted by C(M). It is well known that C(M) has Q(nld-D/21) facets.
The subset M; of M is defined by the set {z(r;) : j =i (mod d — 1)}. We cluster M into
d — 1 subsets My, M,,.., M4_;.

Let us investigate the facets in detail. An index set I = {11,192, ...,44—1} of size d — 1 is called
special if I C {1,2,..,n} and i; = i;_; + 1 if j is even. Furthermore, we set 14y = nif d - 1
is odd. We define the function f;(z) = I1;c1(z(75) = z). It is easy to see that this function is
nonnegative on M, and zero on z(7;) if j € I. Since the degree of fi(z) is d -1, from a similar
argument to the one on p.101 of [E], fi(z) = (u,z) — v on T for suitable vectors u and v,.
Hence, the hyperplane spanned by {z(7;): j € I} appears as a facet of C(M).

Thus, there are (nl(@-1)/2]) facets of C(M), each of which is spanned by a point set
containing exactly one point of each subset M; (i = 1,2,..,d — 1).

Let D(M) be the set of dual hyperplanes of M, and let D(C(M)) be the dual of C(A).
We choose a point z in the interior of D(C(M)). For each hyperplane k in D(M), the point
opposite to z with respect to k is denoted by z(k). The point set {z(h) : h € D(M;)} is
denoted by A;.

Let g be the d-th axis of R%. We choose the points z; i = 1,2,..,d — 1 such that the
distance between each pair of these points is sufficiently large. We consider the hyperplane L;
orthogonal to g containing z;. Now, we translate the point set M; so that z is translated to
z;. We generate n points on g that are infinitesimally near to z;. Let us denote V; for the
Voronoi diagram generated by these 2n points. V is the merged Voronoi diagram of V; for
i =1,2,..,d — 1. The Voronoi region of a point on g is called a central region. Then, if we
select a central region from each cluster, the intersection of these d — 1 regions contributes
Q(nl(4=1/2]) vertices because of the claim. Thus, we obtain the theorem. o

From Theorem 4.4, the upper bound of Corollary 4.3 is tight if d < 4.

~

5 Algorithmic aspect

The proof of Theorem 4.2 gives an algorithm for computing Pr;(S), which runs in O(n2l(d-1)/2]+d-1)

time when the optimal convex hull algorithm of [C] or [S1] is used. With more precise analysis,
this algorithm runs in O(n®) or O(n*log n) time if dimension is three or four, respectively.

The output size is usvally much smaller than the worst-case size; thus, an eflicient output
sensitive algorithm is desirable. The plane sweep method solves the problem in O(M logn)
time if d = 3 (where M is the output complexity). Further, if we use the optimal segment
intersection reporting algorithm [CE], an O(M + K logn) time algorithm can be designed,
where K is the number of edges in S.

In the four-dimensional case, the projected image is an arrangement of n convex polyhedra
in three-dimensional space. The total number of faces of the polyhedra in the arrangement is
O(n?). Below, we give an O(M log n) method.
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Let us consider the space sweep method for computing Pr;(5). We consider the sweep
Plane z =t orthogonal to the z-axis, and translate it from { = —oco to { = 0o. The intersection
Z(t) of Pri(S) with the plane z = ¢ is an arrangement of convex polygons. The complexity of
E(t) is O(Min(n3, M)). For each edge e of Z(t), we compute the value of ¢ at which the edge
vanishes. For all such edges, we keep these values in a priority queue. We update this priority
queue during the sweep. If the sweep comes to the abscissa of a vertex of S, more than one
element of the priority queue may be updated. However, the total number of priority queue
operations is O(M) during the sweep. Therefore, the sweep method gives an O(M log n) time
algorithm for computing Pr(S).

For higher-dimensional cases, an output-sensitive algorithm for computing a convex hull
in O(n? + hlogn) time has been developed by Seidel [S2], where h is the number of faces
on the convex hull. Let k; be the number of vertices of Pr(S) that lie on the projected
images of a (d — 2 — i)-dimensional face of S. If we apply Seidel’s output-sensitive convex hull
algorithm, we obtain a slightly output-sensitive algorithm. The time complexity is at most
O(n®*) + T2 n'k; log n. It is easy to see that k; = O(n2U(@=1)/2)I+d=1-¥) 304 much smaller
in practice.
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