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Abstract

Let P and Q be collections of of n and m points
respectively, on the plane in general position. We say that P
encloses Q if there is a closed simple polygon C with
vertex set P such that all the elements of Q lie in the
interior of C. Clearly if the elements of Q are not
contained in the convex hull of P, Q cannot be enclosed by
P. In this paper we prove that if Q is contained in the
convex hull of P then P encloses at least half of the points of
Q, and we will give examples to show that this bound is
asymptotically tight. We also prove that if the polygon
defined by the convex hull of P has at least m (2 log(m) +1)
vertices then P encloses all the m points of Q.

1. Introduction

Let P, and Qn be collections of n and m points on the plane such that Qp is
contained in the interior of the convex hull, Conv(P,), of P,. We say that P, encloses
Qm if there is a simple polygon C whose vertex set is exactly P, such that Qp is
contained in the interior of C (See Figure 1(a).) For example if Conv(P,)=k <n a
collecion Qx not enclosable by P, can be obtained by placing for each edge e of
Conv(Pp) apoint p in the interior of Conv(Py) at a distance € of the mid point of e,
where € small enough (see Figure 1(b).)
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Figure 1.

It is clear from the example in Figure 1(b) that the condition of Qp being contained
in the interior of Conv(Pp) is not sufficient to guarantee that it is enclosable by P,. Itis
thus natural to ask the following: Given any two collections Py and Qm of points such
that Conv(Pn)2Qm , Is there is a large subset H of Qm that is enclosable by Pp?

Throughout this paper we will denote by PConv( Py) the polygon defined by the
convex hull of Py, Conv(Py), and a polygon whose vertex set is P, will be called a Pp-

polygon.

Theorem 1: Given any two collections of points P, and Qn such that
Conv(Pn)2Qm there is a Pp-polygon that encloses at least half of the points of Qm.

Our result follows immediately from the next lemma which is interesting on its own:

Lemma 1: Let Py be any collection of points. Then there are two Pp- polygons
whose union covers entirely Conv(Py).

Proof: Let ¢ be an edge of Conv(Pp) with end points u and v and letpe be the
mid-point of e. Sort the points of Py in the clockwise direction with respect to pe and
relabel them u=py,...pp=v accordingly (See figure 2(a).) Let S be the subsequence of
u=p1,...pp=v defined by [Py-Conv(Pjy)]u{u,v}. Let ®1 be the Pp-polygon
P1,----Pn,P1 (See figure 2(a).)
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Figure 2.

We define a second Pyp-polygon @ as follows: The boundary of @2 consists of the
union of two polygonals the first of which is Conv(Py)-¢ and the second is the polygonal

defined by the subsequence S of u=p;....pp=v (See Figure 2(b).) It is now clear that the
union of ®; and ¥, covers Conv(Py).

Proof of Theorem 1: Since the union of ®; and ®, covers Conv(P,) and Qp is
contained in Conv(Py) then either ®; or ®; contains at least half of the elements of

Qm.

Next we prove that the bound in Theorem 1 is asymptotically tight. To prove this,
consider a set Pp with n points such that PConv(Py,) is a triangle. Around each point
pePy in the interior of Conv(P,) draw acircle Cp with radius €, € small enough. Place
r points uniformly distributed on Cp, where r is large enough. For each vertex p; of
PConv(Pp), let o be the internal angle of PConv(Py) at pj; Place ( a;l 2®)r points
uniformly at distance € from p; within o; fori=1,2,3. Let Q be the set of points placed
on the small circles around the points of P,, Clearly Q contains (n-3)r + r=(n-2)r points.
Since the sum of the internal angles of any Py-polygon is-(n-2)r, then it encloses at most
[(n-2)r] /2 +n points. It follows that any such polygon contains at most | Q|/2 + n points.
As r—oo this converges o | QI /2.



It is natural to ask the following:
Can we obtain some general conditions thar guarantee that a point set Qm is enclosable by
a given point set Pn? Is there a condition on m which guarantees that Qu it-is
enclosable by Pp?
The answers to these questions seem to be linked to the size of Conv(P).

Theorem 2: If Qn is contained in the interior of Conv(Pp) and m (2 log(m) +1) <
| Conv(P)| then Qp is always enclosable by P.

Here are some preliminary results needed to prove our result. The following lemma is
given without a proof:

Lemma 2: Let Ps be a point set and let x, y and z be three consecutive vertices of
PConv(P;) and q be a point in the interior of Conv(Ps). Then there is a Pg-polygon & that
encloses q such that all edges of PConv(Pg) are in @, except possibly the edges joining
x toy and y to z (See Figure 3.)

Figure 3.
We recall the following well known result:

Theorem 3 (Borsuk-Ulam): Given any two collections of points P and Q on the
plane, there is a line that simultaneously bisects them both.

Sketch of the proof of Theorem 2: Asumme that | Conv(Py) |2 m(2 log(m)+1)
and that m= 2! is a power of 2. (Other forms for m are handled similarly.) By theorem 3,
we can simultaneously bisect the vertex set of PConv(P,) and Qp with aline L. Iterate
this process i times untii Qpm has been splitted into singletons and the vertives of

135



136

PConv(P,) have been divided into 2i subsets, each with size at least | Conv(Pp) | /2 that is
into subsets of size at least 2log(m)+1(See Figure 4.) Clearly for each point q of Qm we

-define in a "natural way" a polygon ®q that contains it and whose vertices are:

a) either intersection points of the lines used to split Qp, , or
b) at least 2log(m)+1 points of PConv(P,) which constitutes one of the 21 subsets of
the vertices of PConv(Py)

Since the splitting process is repeated i times, ®q contains at most i=log(m) edges which
arise from the lines used to split Qm (See figure 4 (a).) It is easy now to verify that a) and b)
together imply that in each ®q there are three consecutive vertices of PConv(Pp) (See

Figure 4(a).)

(a) (b)
Figure 4.
Now in each ®q we can find a poygon enclosing q as in Lemma 2 (See Figure 4(b).)
Finally joining all of the previously obtained polygons and deleting the lines used to split
Qm we obtain our desired Pp-polygon enclosing Qm. This ends our proof.
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