Enumerating k& Longest Distances for n Points in the Plane

Matthew T. Dickerson*
Jason Shugart
Middlebury College

Abstract

In this paper we present a deterministic algorithm which takes as input a set of n points in the
plane and enumerates in descending order the k longest distances between pairs of points. The
algorithm requires O(n + k) space, and for uniform distributions has expected case running time
of O(nlogn + min(k log® n,n?logn)). We also present empirical results showing that for uniform
distributions both the expected average and the expected maximum degree of hull vertices in the

Delaunay diagram are ©(logn). Finally, we report on actual running times for an implementation
of this algorithm. -

1 Introduction
In this paper, we examine the following problem:

Problem 1 (Enumerating Longest Distances in the Plane) Given a finite set S of n distinct
points in the plane, letdy > --- > d(..) be the distances determined by the pairs of points in S. For a

given positive integer k < (“) enumerate in descending order k pairs of points that realize d,,...,d.

More simply stated, the problem is to report in descending order the k longest interpoint distances
for a set of n points in the plane.

Problem 1 is related to the following problem which has received considerable attention:

Problem 2 (Selecting Distances in the Plane) Given a finite set S of n distinct points in the
plane, letd; < ---< d(..) be the distances determined by the pairs of points in S. For a given positive

integer k < (3), determine the value of di. and find a pair of points that realizes dy.

It is easy to see that a solution to Problem 1 for £ = k; provides a solution to Problem 2 for
k= ((3) — k1)

Prgblem 2 has recently been investigated by Chazelle [4], and by Agarwal, Aronov, Sharir, and Suri
[1]. Chazelle [4] presented a subquadratic solution to Problem 2 based on the batching technique of Yao
[14]. The algorithm works in any dimension, and for dimension 2 the running time is O(n%/5log/® n).
Agarwal, Aronov, Sharir, and Suri [1] have improved that result providing an algorithm which runs
in time O(n4/3+‘) Dickerson and Drysdale [6] recently presented an O(nlogn + klogn) time and
O(n + k) space algorithm for the problem of enumerating the smallest k distances. This also provided
a solution to the Problem 2 which is faster than the algorithm of [1] for the case when k is O(n4/3).
Salowe, who had earlier solved the interdistance selection problem for the Lo, metric in d-dimensions
in O(dnlog®n) time [11] has recently extended those results to get an O(nlogn) algorithm for the
selection problems that works for any L, metric in arbitrary dimension d, for k¥ < n [12]. As an

*This study was supported in part by the funds of the National Science Foundation, NSF RII-8610679.

137

138

n 125 250 500 1000 2000 4000 8000 16000 32000
avg 5.614 5964 6.415 6.669 7.018 7.313 7.628 7.948 8.228
max 8.240 8.780 9.740 10.660 11.640 12.360 13.740 14.230 15.160

Table 1: Expected Degrees of Hull Vertices: U.D. on a Disc

intermediate result, he presented an O(nlogn + k) algorithm for enumerating the smallest k distances
(not necessarily in sorted order). However the running time of the algorithms of [6] and [12] are
dependent on k which is an undesirable feature for the selection problem; when k is Q(n%/3), these
algorithms are slower than that of [1] for Problem 2.

In this paper we explore Problem 1, enumerating k longest distances for n points in the plane,
which is intuitively more difficult than the shallow enumeration problem explored in [6] and [12),
and which also provides a solution to the selection problem, Problem 2. Problem 1 has recently
been explored by Katoh and Iwano [8] who made use of the k-farthest neighbor Voronoi diagram
to provide an algorithm requiring time O(min{n?,n + (k*/3/(log k)1/3)} log), or equivalently time
O(nlogn + (k*/3/(log k)!/3)log n) with an upper bound of O(n?log n).

We present an algorithm for the solution to Problem 1 which makes use of the standard Delaunay
diagram as its basic data structure. The algorithm uses O(n + k) space and has an expected case
running time of O(nlogn + min(klog? n,n?logn)) for uniform distributions. It is simple to state, is
based on a common data structure, and given the Delaunay diagarm it is easily implementable. We
have implemented the algorithm and tested it on values of n and k ranging up to n = 32000 and
k = 108. After the algorithm has been presented, we mention some empircal results achieved by this
implementation. We also present empirical results on the degrees of vertices in the Delaunay diagram.

2 Expected Degrees of Hull Vertices in the Delaunay Diagram

In this section, we present some empirical results on the expected degrees of hull vertices in the
Delaunay diagram of points in a uniform distribution.

In Table 1, we give both the average and maximum degrees of convex hull vertices for a set of
n points taken from a uniform random distribution on a disc. For each value of n, we averaged the
results of 50 different sets.

When compared to a logarithm function of n, the r2 value for the average degree is 0.997 and
the 2 value for the maximum degree is 0.996. We ran similar tests for uniform distributions of both
integer and real points over a square, and all empirical tests supported the following proposition:

Proposition 1 In a uniform distribution of n points, the ezpected average and mazimum degree of
hull vertez in the Delaunay diagram is ©(log n)).

We note that this is not an unexpected result; a similar result for the greedy triangulation was
reported by Manacher and Zobrist [9)].

'3 Enumerating k£ Longest Distances

We present an O(nlogn + min(klog? n,n?logn)) expected time algorithm for Problem 1. We begin
with our algorithm, and then give a proof of its correctness and running time.

In Algorithm 1, let Q be a priority queue which supports an Add operation and a DeleteMax
operation. The DeleteMax operation deletes from Q the pair (v, w) of maximum distance and returns
(v,w). The Add (v, w) operation adds a pair (v, w) to Q if the pair is not already in the queue. Here
and throughout the paper, we let d(v, w) be the Euclidean (or Ly) distance function. We also use

139

the term antipodal pairs in the standard way, to refer to a pair of points in S that admits parallel
supporting lines, where a supporting line is a straight line passing through a vertex of § such that all
points in S fall on the same side of that line [10].

3.1 Algorithm 1

Step 1: Preprocessing Phase Given a finite set S of n distinct points, construct the Delaunay
diagram D of S and the convex hull H of S.

Step 2: Initializing Priority Queue For all antipodal pairs (v, w) with v,w € S, Add(v, w).

Step 3: Enumeration

FOR i:=1TO k DO
a) Let (v, w) := DeleteMax(Q).
b) Report (v, w) with d; = d(v, w).
¢) V(w,z) € D, if d(v,z) < d(v, w) then Add(v,z).
d) V(u,v) € D, if d(u, w) < d(v,w) then Add(u,w).
END

3.2 Proof of Correctness

We now prove the correctness of Algorithm 1 by induction on k. This means proving that for a value
of i at Step 3.b), the algorithm really does report the itk longest distance.

For the base case i = 1, we note that the pair of points (v,w) realizing the longest distance d,
would have been put into the queue in Step 2, since (v, w) is an antipodal pair [15). In order to prove
the inductive case, we need the following theorem.

Theorem 1 Let S be a set of n points in the plane, D the Delaunay diagram of S, and (v, w) a pair
of points which realizes d;, the i** longest interpoint dz'stqnce in §. Then one of the following holds:

a) points v and w are antipodal,
~ b) there ezists a point u € S such that (u,v) € D and d(u, w) > d;, or
¢) there ezists a point z € S such that (w,z) € D and d(v,z) > d;.

Proof If v and w are antipodal, then condition (a) is met and we are done.

Assume that condition (a) is not met. Let v be the ray beginning at point v and passing through
w, and let L, and L,, be the parallel lines passing through v and w respectively and perpendicular to
vW. Since v and w are not antipodal, L, and L,, can not be supporting lines for S. Either there exists
some point z € S which falls on the opposite side of L,, from v, or there exists some point z € S which
falls on the opposite side of L,, from w, or both. Without loss of generality, we assume the former-and
will show that condition (c) is met. (The corresponding case is analogous.)

Let z € § be a point on the opposite side of L,, from v. The perpendicular bisector of z and w
intersects v on the z side of L,, and divides the plane into two halfplanes H. and H,, with H,
containing z and H,, containing both w and v. Let V(w) be the Voronoi region of w. Every point on
H: is closer to z than to w, and so no point on H, can fall in V(w). The ray vt passes through w,
and then out of H, and into H,, and so it follows that v passes through V(w) and into the Voronoi
region for some other point z’ € S. (Possibly though not necessarily z’ = z). Thus there is a Delaunay
edge from w to some point z’ € § with d(v,z’) > d(v,w), and condition (c) is met. O

140

Based on Theorem 1, we can now finish the proof that the algorithm is correct using induction on
t. Assume that the algorithm correctly enumerates the ¢ — 1 longest distances d,...,d;_;. We need
to show that at step 1, a pair realizing d; has been added to the priority queue. (Indeed, Theorem 1
states something stronger, namely that all pairs realizing distance d; will have been added by this
step.) Let (v, w) be such a pair realizing d;. If (v, w) is an antipodal pair, then (v, w) was added to
the queue in step (2). If (v, w) is not an antipodal pair, then by Theorem 1 for some j < ¢ there exists
either a Delaunay edge (u,v) with d(u, w) = d; or a Delaunay edge (w, z) with d(v,z) = d;. In either
case, (v, w) will have been added to the priority queue in Step 3 part (c) or (d).

We have now shown that the algorithm correctly reports the k longest distances for n points in
the plane.

3.3 Analysis

We implement our priority queue using a balanced search tree such as a B-Tree, or a 2-3-Tree. The
tree contains at most (3) nodes, so our Add and DeleteMax operations require O(log n) time.

The preprocessing phase given in Step 1 can be performed in time O(n logn) for a set S of n points
using any of a number of algorithms [13]. For Step 2, the number of antipodal points is O(h) and can
be computed in time O(h) where h is the number of points on the convex hull H of S [10]. In the
worst case h = n and the step requires a total of O(nlogn) time.

The k DeleteMax operations of Step 3.a) require a total of O(klogn) time. The potentially
disastrous parts of Step 3 are substeps c) and d). A single point may have n — 1 Delaunay edges,
and so this step may require ©(nlogn) time for a single iteration. If k is ©(n?), this gives us an
O(n®log n) time algorithm, which is worse than the naive approach using an optimal sorting algorithm.
Fortunately, we can get a much tighter amortized bound. Remember that though a single vertex may
have n — 1 Delaunay edges, there are still only a total of O(n) Delaunay edges. Each edge has two
endpoints, and so it may be a part of only 2n — 2 reported distances. We therefore have O(n) edges,
each of which will be “examined” in Step 3 parts c) and d) at most O(n) times. In the worst case,
therefore, Step 3 requires a total of O(n?logn) time for all iterations, which is no worse than using
an optimal sorting algorithm on all n? distances.

Our average case time bound can be improved even further. We note that the expected degree
of interior points (points sufficiently far from the convex hull) in the Delaunay diagram in a uniform
distribution is a constant [5,7). And Bern, Eppstein and Yao [2] have recently shown that the maximum
expected degree of interior points is ©(logn/loglogn). However since our algorithm is reporting
longest distances, we can expect that many of the endpoints will be hull points and not interior points.
Proposition 1 states that the average and maximum expected degree of hull points in the Delaunay
diagram is ©(logn), and so the total expected number of edge examinations for all iterations of Step
3 is O(klogn), with each Add operation requiring time O(log) giving us a total expected running
time of O(nlogn + min(klog? n, n?log n)).

The Delaunay diagram requires O(n) space to store at most 3n — 6 edges. It appears that the
priority queue could potentially grow as big as (’2‘) as we continue to add pairs of points, but we note
that we never need to store more than the largest k pairs in the queue. In fact, after iteration i of
the algorithm, the largest k — ¢ pairs in the queue will suffice. So for every Add operation increasing

-the size of the queue beyond k — i we may also delete and throw away the smallest distance in the

queue. Since deleting the minimum value of a balanced tree can also be performed in O(logn) time,
this does not asymptotically increasing the running time of the algorithm. Thus the priority queue
may be stored in O(k) space for a total of O(n + k) space.

n=1000 n=2000 n=4000 n=8000 n=16000 =n = 32000

k = 5000 1454 1491 1488 1541 1627 1735
k = 6000 1761 1807 1808 1874 1970 2097
k=7000 2076 2126 2135 2209 2318 2462
k =8000 2397 2448 2469 2547 2666 2827
k=9000 2723 2777 2805 2890 3021 3197
k =10000 3052 3112 3143 3238 3378 3569

Table 2: Average Running Times for a Uniform Random Distribution

4 Implementation and Testing e

The algorithm has been implemented in C. We note that a nice feature of our algorithm is that it
makes use of the standard Delaunay diagram as its basic data structure. Though the diagram is by
no means simple to compute, it is commonly used in many applications and may already be available.
Not counting the Delaunay diagram code or the priority queue implementation (another data structure
which is commonly available) our algorithm proved both quick and easy to implement, and required
less than 50 lines of code. It has been tested for values of n to 32000 and values of k to 108. These
tests have been done on sets of points in uniform random distributions in a square and disc, as well
as for the set of n points on a v/n X /1 square grid.

Table 2 gives the running times of Algorithm 1 for various values of n and k. In this series of
tests, we used random real points in a uniform distribution over a disc. For a given n, we generated
50 random point sets, and for each point set ran the algorithm for all of the values of k. The times
given in Table 2 are the averages of the 50 runs for Step 3) of Algorithm 1 only, as that is where the
interesting expected run time analysis was. From Table 2, it is not difficult to see the algorithm’s
running time was linear in k. For the n = 8000 column, for instance, the r? value is .999. For fixed
k, we also compared our times to the logZ n curve. For k = 10000, the data gives an r? value of .995.
We ran similar tests for other uniform distributions, including uniform random distributions of real
points in a 10000 x 10000 square, and uniform random points from a 10000 X 10000 integer grid. In
almost all cases, the r? values were greater than .995 for both fixed k and fixed n.

Additionally, we note that in Table 2 if we remove the n = 1000 column, the 2 value for £ = 10000
is 1.000. A closer look at the algorithm gives a hint as to why this is the case. The priority queue
initially contains only antipodal pairs, and so has initial size O(h) and so initially the queue operations
require time O(log k) rather than O(logn) until the queue has had a chance to grow. For uniform
distributions, it is well known h << n.

5 Summary and Open Problems

We have presented an algorithm for enumerating the k greatest interpoint distances for a set of n
points in the plane. For uniform distributions the algorithm uses O(n + k) space and has an expected
running time of O(nlogn + min(klog? n,n?logn)). When k is O(14/3), the algorithm also provides
_a solution to Problem 2 which is asymptotically faster than the best known selection algorithm of [1).
Thus for the selection problem, Algorithm 1 which efficiently selects long distances provides a nice
complement to the algorithms of [6] or [12] which are efficient at selecting small distance.

It would be nice to improve the worst case results for this problem. The nature of the problem
intuitively suggests the use of generalized Voronoi diagrams, specifically farthest point Voronoi dia-
grams rather than closest point diagrams. The solution of Katoh and Iwano [8] makes use of k-order
Voronoi diagrams in an algorithm which is essentially O(k*/3logn) in the expected and worst case.

141

142

Thus their algorithm is not as efficient as ours in the average case, but has a significantly better worst

case complexity. We pose as an open problem: Can Problem 1 be solved in O(nlogn + klog n) worst
case time?

6 Acknowledgements

The authors would like to thank Volker Turau for suggesting an improvement to Step 2 of the algorithm,
making use of the all antipodal points algorithm rather than an earlier version of the paper which
used all pairs of point on the convex hull.

References

[1] P.K. Agarwal, B. Aronov, M. Sharir, and S. Suri, “Selecting Distances in the Plane.” Proceedings
of the Sizth Annual ACM Symposium on Computational Geometry (1990) 321-331.

[2] M. Bern, D. Eppstein, and F. Yao, “The Expected Extremes in a Delaunay Triangulation.” IJCGA
1:1 (1991) 79-91.

[3] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan, “Time Bounds for Selection”. J.
Computer and Systems Sciences 7(1973), 448-461.

[4] B. Chazelle, “New Techniques for Computing Order Statistics in Euclidean Space” Proceedings of
the First Annual ACM Symposium on Computational Geometry (1985) 125-134.

[5] LK. Crain, “Monte-Carlo Simulation.of Random Voronoi Polygons; preliminary resulls.” Search 3
(1972) 220-221.

[6] M. Dickerson and R.L. Drysdale, “Enumerating k Distances for n Points in the Plane.” Proceedings
of the Seventh Annual Symposium on Computational Geometry (1991) 234-238.

[7] R. Dwyer, “Higher-Dimensional Voronoi Diagrams in Linear Expected Time.” Discrete and Com-
putational Geometry 6 (1991) 343-367.

[8] N. Katoh and K. Iwano, “Finding k Best Distances of n Points in the Plane.” Kobe University and
IBM, Japan, 1991.

(9] G. Manacher and A. Zobrist, “Probabilistic methods with heaps for fast-average-case greedy algo-
rithms.” Advances in Computing Research vol. 1 (1983) 261-278.

(10] F. Preparata and M. Shamos, Computational Geometry, Springer- Verlag, 1985.

[11] J.S. Salowe, “L-Infinity Interdistance Selection by Parametric Search.” Information Processing
Letters 30(1989) 9-14.

[12] J.S. Salowe, “Shallow Interdistance Selection and Interdistance Enumeration.” Proceedings WADS
’91, Lecture Notes in Computer Science Spring-Verlag Berlin (1991) 117-128.

"[13] M. Shamos and D. Hoey “Closest Point Problems.” Proceedings of the 16th Annual Symposium

on Foundations of Computer Science (1975) 151-162.

[14] A. Yao, “On Constructing Minimum Spanning Trees in k-dimensional Space and Related Prob-
lems.” SIAM J. Computing 11(1982), pp. 721-736.

[15] M. Yaglom and V.G. Boltyanskii, Convez Figures Holt, Rinehart, and Winston, 1961.

