Incremental Construction and Dynamic Maintenance of

Constrained Delaunay Triangulations

Thomas C. Kao

David M. Mount

Department of Computer Science
University of Maryland
College Park, MD 20742

Email: kao@cs.umd.edu (Internet)

Abstract

The Delaunay triangulation DT'(V') (for a point set V)
is an important geometric structure. Sometimes for
many applications it is desirable to add constraints re-
quiring that a certain set £ of edges be present in the
triangulation. This is called a constrained Delaunay tri-
angulation, for a point set V, denoted as DT(V, E). An
algorithm is presented for the dynamic maintenance of
constrained Delaunay triangulations in the plane. There
are four major operations for manipulating the triangu-
lation: point insertion, point deletion, constraint chord
insertion and constraint chord deletion. This is the first
algorithm to implement all four operations under one
consistent framework.

A randomized algorithm is presented, so that under
fairly weak assumptions on the positions of the N points
in the set V, an arbitrary set E of M nonintersecting
chord deletions can be performed in O(Nlog M) ex-
pected time, and a set of M chord insertions can be
performed in O(N log N log M) expected time.

1 Introduction

The triangulation of a point set V is obtained by joining
the points of V' by nonintersecting straight line segments
so that every region internal to the convex hull of V is
a triangle. The Delaunay triangulation of the point set
V, denoted as DT(V), is a triangulation of V with the
additional property that the circumcircle of any trian-
gle in the triangulation contains no points of V in its
interior. This is also called the “empty-circle” criterion
[9]. In the plane it is known that the Delaunay triangu-
lation is the triangulation that maximizes the smallest
angle over all possible triangulations of the input point
set V. This is also called the maz-min angle criterion
[11].

Although the Delaunay triangulation is widely used
for various purposes, it is common to impose additional
chord constraints for practical considerations. The re-
sulting triangulation is called a constrained Delaunay

Figure 1: A’ truncated circle

triangulation, denoted as DT(V, E) for a point set V and
aset E of edges between vertices in V. Lee and Lin [11]
defined it using the “truncated empty circles” (see Fig-
ure 1) such that the circumcircles are truncated (or cut)
by the constraint chords. More specifically, a triangle
t = A(u, v, w) is empty if the circumcircle of ¢ contains
no vertices visible from all three vertices u, v, w. Those
constraint chords are edges of the planar straight line
graph (PSLG). Alternatively, the constrained DT(G) of
a PSLG is a triangulation of the graph G = (V, E) that
maximizes the minimum angle over all possible triangu-
lations of the graph [11]. We will use planar subdivision
and PSLG interchangeably. We also denote constraint
edges (or segments) as constraint chords or simply
chords.

There are quite a few applications of constrained DTs.
For example, mesh generators for finite element analy-
sis [2] [3] may require a (Delaunay) triangulation of the
points subjected to given boundary constraints. In geo-
graphic data processing it is often desirable to preserve
natural features like ridges or valleys [7] [14].

An algorithm is presented for the dynamic main-
tenance of constrained Delaunay triangulations in the
plane. There are four major operations for manipulat-

' ing the triangulation: point insertion, point deletion,

constraint chord insertion and constraint chord dele-

tion. We show that the running time is proportional
to the number of structural changes (k) for chord dele-
tion (O(k)) and is O(klogk) for chord insertion.

Throughout the entire paper, assume that we are
given a set V of N vertices in the plane, and a set E
of M nonintersecting edges (chords) between vertices in
V. By Euler’s formula, we have M < 3N — 6. It is
shown that under fairly weak assumptions on the posi-
tions of the N points in the set V, an arbitrary set E
of M nonintersecting chord deletions can be performed
in O(Nlog M) expected time, and an arbitrary set of
chord insertions can be performed in O(N log N log M)
expected time by invoking our algorithms as a ran-
dom permutation of the chords. This provides a sim-
ple O(N log N) expected time algorithm for computing
DT(V, E) by first constructing an arbitrary triangula-
tion AT(V, E) of points in V containing the given set E
of nonintersecting constraint chords. Then in random
order deleting each edge ¢ € F from this triangulation
AT(V, E) to transform it into DT(V, E).

Previous Work: Lee and Lin [11] described an
O(N?) algorithm for computing the constrainted
DT(V, E) of N vertices and M constraint chords. If the
vertices of V formed a simple polygon, and the edge set
E is the boundary of the polygon, the DT(V, E) can be
computed in O(N log N) time by divide-and-conquer.
More details will be described Section 2.

Chew proposed the first O(N log N) optimal time al-
gorithm for building the DT(V, E) [6]. By way of divide-
and-conquer, the planar graph G = (V, E) of N ver-
tices and M constraint chords is subdivided into ver-
tical strips such that there is exactly one endpoint in
each strip. The DT of each strip is computed and then
recursively merged together to form the final DT(G) of
the entire graph.

De Floriani and Puppo [7] adopted a simple O(k?)
time algorithm for the insertion of a constraint chord e
by performing edge-swaps locally [13], where k = L(e)+
R(e). Therefore, the worst-case time complexity of their
algorithm is O(M N?). If those M chords are introduced
at the same time, the worst case running time is reduced
to O(N?) [7].

2 Merging by Chord Deletions

In this section we present our algorithm for processing
chord deletion in a constrained Delaunay triangulation.
Before discussing our algorithm we mention a closely
related problem: constrained DTs of simple polygons.
An asymptotically optimal algorithm for computing the
constrained Delaunay triangulation of any simple poly-
gon is proposed by Lee and Lin [11). They used the
polygon-cutting theorem of Chazelle [4] and visibility

polygon from a vertex [10] to compute constrained DT
of a simple polygon of size k in O(klog k) time. They
subdivided the input polygon Q into two roughly equal
sized subpolygons L(e) and R(e), which are separated
by a diagonal edge e of Q. The algorithm recursively
constructs DT(L(e)) and DT(R(e)) for the two subpoly-
gons. Then the two triangulations are “merged” to form
DT(Q) in linear time. The overall time required for the
construction of DT(Q) is O(|Q|log(|Q])).

In a nutshell, their algorithm achieved “merging” of
two DTs separated by an edge e through the deletion
of the constrained (diagonal) chord e. By removing the
edge e, Lee and Lin were able to merge two DTs from
two sub-polygons L(e) and R(e) in linear time.

Merging two Delaunay triangulations is a fundamen-
tal operation in Lee and Lin’s construction. In fact,
the first linear-time merging algorithm for DTs is pro-
posed by Lee and Schachter [12]. They devised a proce-
dure for merging two DTs separated by a straight line.
Guibas and Stolfi [9] implemented a very similar merg-
ing scheme using their own invention, the quad-edge
data structure.

The merging of two disjoint DTs separated by a line
[12] can be considered as a special case of the more
general merging of two DTs separated by an edge [11].
In general, we can generalize it further to consider the
“stitching” of the Delaunay triangulation of any PSLG
G by the deletion of any edge that does not belong to
the final DT(G).

We will generalize the merging operation for PSLGs.
Observe that merging two DTs separated by a chord
is essentially the same as deleting a constraint chord
from the triangulation. We are able to simplify Lee and
Lin’s algorithm for merging two DTs (by chord deletion)
by eliminating the need to compute visibility polygons.
In particular, given a chord ¢ = pg to delete in the
planar graph G, check if e belongs to the final DT(G).
K it does, the merging is trivially done. Otherwise, e
is deleted and the next task is to find a cross-edge uv
that belongs to DT(G) such that u € L(e) and v € R(e)
[11]. Lee and Lin chose v to be the vertex connected to
both p and ¢ in"DT(R(e)), and find the vertex u to be
on the smallest circle that passes through p, v and u, for
all possible u’s that are visible from the vertex v.

We can do better than that. Denote deg(p) as the
number of vertices adjacent to p in a graph. By choos-
ing both u and v to be connected to p, we can find our
first cross-edge W that belongs to DT(G) in time pro-
portional to deg(p), and without the help of visibility
polygon (from the point v).

171

172

The procedure (for finding the first cross-edge) is sim-
ilar to Lee and Lin’s algorithm for computing the Delau-
nay edges around a fixed vertex [11]. Let L, L’ € L(e)
and R,R' € R(e). We maintain the invariant that
R,R,L,L’' are four consecutive vertices counterclock-
wise around the fixed vertex P. We intend to compute
a Delaunay edge from L to R, such that L, P and R
forms a Delaunay triangle. We need to verify that the
right hand side vertex R’ is indeed outside the circle
passing through L, P and R. If not, we delete the edge
from P to R, let R be R’ and repeat the process. We
call this test testR. Similarly, we need to verify that the
left hand side vertex L’ is indeed outside the circle pass-
ing through L, P and R. If not, we delete the edge from
PtoL,let L be L' and repeat the process. We call this
test testL. If both tests (testL and testR) are satisfied
simultaneously, we have found the right answer.

Theorem 2.1 Deleting a chord pg that results in k new
edges in any constrained DT can be performed in O(k)
optimal time.

3 Imposing Constraints by

Chord Insertions

Before we can insert a constraint edge e = pg, we as-
sume that the endpoints p and ¢ are already inserted
into the current triangulation DT. There are two ma-
jor steps required to insert edge e as a constraint edge
of DT. First, we must identify the regions of the tri-
angulation affected by the insertion of e. Any triangle
intersected by e will not be in updated triangulation.
Any triangle not intersected by e must be empty before
the insertion of e and so is empty afterwards. Thus it
suffices to consider the set of triangles intersected by
e. Alternatively, we identify two polygonal chains L(e)
and R(e) on the left and right side of the directed edge
e from p to g. We call L(e) and R(e) (enclosed by e) as
the two influence regions [7] associated with the inser-
tion of edge e. For example, in Figure 2 the polygonal
region L(e) is formed by vertices p,q,r,s and ¢, and
R(e) is consisted of vertices ¢,p,u,v and w. If e € DT
(e belongs to the final DT with other constraints), then
the task is trivially done. Otherwise, the second step is
to re-triangulate (using truncated empty-circle or max-
min angle criteria) the two regions L(e) and R(e) re-
spectively to form the constrained DT of the sites and
the constraint edges. In the bottom half of Figure 2, we
show the resulting DTs (for both L(e) and R(e)) after
the chord e is inserted.

Assume the indices of the endpoints (p and g¢) of e
are given. Let k = |L(e)| + |R(e)|. The first step can
be done in O(k-+ deg(p)) time by finding the triangle
incident to p that intersect e and simply walking inside
the current triangulation DT starting at vertex p. The
second step requires more complex procedures to con-
vert a simple polygon into its DT. For the insertion of

Figure 2: Constraint chord insertion

any chord e, we can do it in O(klogk) time, using Lee
and Lin’s algorithm [11]. But because of the inherently
complexities of Lee and Lin’s algorithm (relying on the
polygon-cutting theorem to triangulate, and the need to
compute the visibility polygons for up to N —3 vertices),
people (e.g. [7]) tend to use simpler but nonoptimal al-
gorithms to construct DT.

Our Approach: In the following discussion, we focus
on the insertion of one single chord into the DT of N
points. We are able to simplify the chord-insertion prob-
lem while preserving the O(klogk) time bound, where
k = |L(e)| + |R(e)|. First of all, we use domain-specific
knowledge to obtain greedy triangulations of the influ-
ence regions L(e) and R(e)) respectively, in linear time.
Although any simple polygon can be triangulated in lin-
ear time by an optimal algorithm invented by Chazelle
[5], the procedures involved are very complicated. As
shown by many authors (e.g. De Floriani and Puppo
[7]), both L(e) and R(e) are edge-visible polygons as seen
from the edge e. We observe that any edge-visible poly-
gon can be triangulated in linear time by using a simple
greedy algorithm similar to the “Graham scan” for com-
puting the convex hull of a simple polygon [8]. We take
three consecutive vertices a,bd,c at a time, and test if
the vertex b is concave. If b is convex, we can safely
cut-out the ear-triangle formed by a, b, ¢ by adding the
diagonal @¢ (and try the next triple of vertices). The
correctness of the procedure follows from the fact that
if the newly added edge @c intersects any part of the
polygonal chain L(e), either vertex a or ¢ is not visible
from the edge e, a contradiction. If vertex b is concave,
the algorithm try next triple of vertices. Special care is
taken to make sure the base edge e belongs to the last
ear-triangle in the process.

After L(e) is triangulated by the above procedure, we
form the final DT by successively deleting each one of
the |L(e)| — 3 chords (or diagonals) forming this initial
(greedy) triangulation. The order in which these chords

are deleted is important for the efficiency of the pro-
cedure. Ideally chords should be deleted in a balanced
fashion so that triangulations of roughly equal size are
merged together on either side of the chord to ensure
O(|L(e)|log(|L(e)])) time worst-case bound. The order-
ing can be obtained by depth first search of the dual-
tree of the triangles of L(e) in the same time bound. We
call the the ordering of diagonals as centroid decompo-
sition of the dual tree, as it tries to break it in roughly
two-halves. The same procedure is applied to the other
edge-visible R(e).

Theorem 3.1 A chord pg can be inserted into a con-
strained DT in time O(klogk + deg(p)), where k is the
number of triangles intersected by the chord.

4 Putting It All Together

4.1 Point Deletions Revisited

The first theoretically optimal algorithm for deleting a
point from a planar Delaunay triangulation is proposed
by Aggarwal, Guibas et al. [1]. They can compute a
special kind of 3D convex hulls of k points in O(k) time.
The algorithm is intended to compute the DT of vertices
of convex polygons in linear time. They also prove that
the deletion of a point p from DT can be done in O(k)
time, where k is the number of vertices around p in the
DT. The k vertices adjacent to the point p on a lifted
3D convex hull (paraboloid of revolution) [9] actually
form a 3D conver cone, and therefore the deletion of P
from the 3D convex hull can be done in O(k) time. In
the projected plane, these k vertices form a star-shaped
polygon around p, and is denoted as star(p). Any planar
Delaunay triangulation is a projection of the lower half
of the lifted 3D convex hull (paraboloid) [9]. Therefore,
maintaining the DTs by deleting the point p (of degree
k) takes O(k) time.

Unfortunately, the O(k) time algorithm can not be
applied here. We observe that if there are constraint
chords in the Delaunay triangulation, the projection
from 3D convex hull does not quite work here. In
fact, off-line incremental insertions of the k vertices of
star(p) does not work either, because it only gives the
un-constrained version of the DT (of the points, with-
out the edge constraints of star(p)). Fortunately, we can
treat it almost like the chord-insertion problem. First,
we compute a greedy triangulation of star(p). This can
be- easily computed in O(k) time by cutting out ears
one by one. The rest is done by deleting all diagonals
of the greedy triangulation, according to the ordering
suggested by the polygon-cutting theorem [4]. There-
fore, the time needed to delete a point from any DT is
O(klogk).

Theorem 4.1 Deleting a point of degree k from any
constrained DT can be done in O(klogk) time.

Figure 3: A worst case

4.2 Sequence of Chord Insertions or
Deletions

Consider the following problem (P1):

Given the DT(V) of a set V of N points, we wish to in-
sert a set E of M nonintersecting chords (between ver-
tices in V) one by one in random order (for the purpose
of computing DT(V, E)). What is the expected num-
ber of new triangles (or edges) destroyed in the process?
Equivalently, we can consider its dual problem (P2):
Given the DT(V, E) of a planar graph with |V| = N
vertices and |E| = M chords, we wish to delete all the
M chords one by one in random order (for the purpose
of computing DT(V)). What is the expected number
of triangles destroyed in the process?

A trivial upper bound to both problems P1 and P2 is
O(MN), as each chord can affect (or cut through) O(N)
triangles in the constrained DT. As M is bounded above
by 3N, the trivial bound is O(N?) structural changes.
By structural changes we mean the number of triangles
(or edges) destroyed (or created) in the process of M
operations like inserting or deleting of chords.

We can show that in the worst case the O(N?) bound
on structural changes is tight. For example, in Figure 3,
€1 =7Z, e; = W, €3 = GV, e4 = 70, and eg = U are five
chords to be inserted. If the order of chord insertions
is e; followed by e, es, e4 and finally e5, the number of
edges deleted (or structural changes) is 1+2+ 3 = 6.
In general, if there are n vertices on each side of the
convex chain, n chord insertions of the same pattern can
generate 1+2+...4(n—2) = (n—2)(n—1)/2 structural
changes. On the other hand, if the main diagonal (e3 =
gv in the above figure) is inserted first, there will be
exactly 2n — 5 structural changes.

Note that the same pattern in Figure 3 suggests that
O(n?) edge-swapping locally [13] [7] is required in the
worst case. On the other hand, because the 2n points
form a simple polygon, only O(nlogn) chord deletions
are needed, as suggested by the polygon cutting theo-
rem. Therefore, our chord-deletion strategy is superior
to an edge-swapping one, at least in terms of the worst
case performance for computing constrained DT of sim-
ple polygons.

173

174

Empirical studies suggest linear or close to linear per-
formance for many kind of point distributions. By ran-
domizing the sequence of insertions (or deletions), we
hope to avoid such pessimistic bound like O(N?). In
fact, we intend to show that, under random ordering of
chord deletions (or insertions), the expected number of
structural changes is no more than O(N log N).

We wish to extend the result to include chord in-
sertions and deletions. We observe that every chord
inserted into the DT(V') can cut through O(N) trian-
gles in the worst case. Equivalently, every chord deleted
from the DT(V, E) can affect O(N) vertices in the worst
case. We wish to show that the deletions (or insertions)
of a random sequence of |E| = m nonintersecting chords
from a DT(V, E) (with |V| = n) can be expected to gen-
erate O(nlogm) structural changes.

We have to redefine the concept of so-called “gen-
eral position” before we proceed with the main theorem
(Theorem 4.4). In computational geometry, the typical
general position assumption for planar Delaunay trian-
gulation or Voronoi diagram is that “no four or more
points are cocircular”. We can generalize the concept
by the following:

Definition 4.1 Given three distinct points u,v,w (not
collinear) in the plane, let C(u,v,w) denote the cir-
cumcircle of these three points. a chord e is a cut-
ting chord for triangle A(u, v, w) if the endpoints of e
lie outside C(u,v,w), e does not intersect the triangle
A(u,v,w), and e intersects C(u, v, w).

Definition 4.2 Consider a planar point set V and we
are given two constants c > 3 and 0 < epsilon < 1. The
point set V is said to be in (c,c)-general position if
for any circumcircle C(u, v, w) (with radius r) of three
points u,v,w in V, the annulus of disk C formed by
radii r and (1 — €)r contains at most c points.

According the above definition, the “no four or more co-
circular point assumption” is equivalent to the (3,0.0)-
general position assumption.

Definition 4.3 Consider a circle C (with radius r) and
a constant 0 < € < 1. If the intersections between a
(constraint) chord e and the disk C lie entirely within
the annulus with radii r and (1 — ¢)r, the chord e is
called o shallow cut for C. Otherwise, if e intersects
with C and is not a shallow cut, it is called a deep cut

forC.

Let the triangle ¢ = A(u,v, w). Because t € DT(V, E),
there is no point p visible from u, v, w that is inside the
circumcircle C(u,v,w). By visible, we mean the ray
from u (or v, w) to p does not intersect any constraint
chord.

Definition 4.4 The deletion of a constraint chord f
can only affect the triangle t = A(u,v,w) only if f in-
tersects C(u,v,w), f is not blocked by any other con-
straint chord e as seen from all three vertices u,v,w,

such that there is at least one point d invisible from
u,v,w is hidden behind f. By saying a chord e blocks
another chord (or cut) f, we mean the circular arc (clos-
est to d) cut by e is a superset of the circular arc cut by

f.

If f is indeed blocked by e as seen from the triangle ¢, the
deletion of either e or f will not affect ¢, unless both e
and f are deleted. For example, in Figure 1, the deletion
of chord h will affect the triangle t = A(u, v, w), while
the deletion of the chord g is irrelevant to ¢. Only the
deletion of both chords e and f will affect the triangle
t. Now let us assume that there is an additional point
d inside the circumcircle of ¢ and is between chords e
and f. Then the deletion of the chord e (before f) will
cause the point d to be inserted into the triangle ¢, which
will create two new triangles A(d, v, w) and A(d, w, u).
On the other hand, the deletion of the chord f (before
e) will not affect the triangle . As far as the triangle
t = A(u, v, w) is concerned, the presence of chord e will
“negate” the effect of chord f, and therefore we do not
consider blocked chords like f as relevant to C(u, v, w).
Only unblocked chords like e are considered relevant.

Lemma 4.2 Given a positive constant € < 1, the num-
ber of nonintersecting deep cuts (that are not blocked by
other cuts) for any circumcircle C is bounded above by

f(e) =7x/cos™(1—¢).

Proof. Follows from simple trigonometry. (u]

Lemma 4.3 Consider a DT(V, E) with |V| = n points
and |E| = i nonintersecting constraint chords. Under
the (c,¢€)-general position assumption, the total num-
ber of triangles affected by those i consiraint chords is
bounded above by (c + f(€)) - 2n, which is O(n).

Proof. Let t(e) denote the number of triangles affected
by the deletion of the constraint chord e € E. The
total number of triangles affected by those i chords is
equal to the summation of ¢(e) over all the i constraint
chords. Note that every ¢(e) is bounded above by 2n,
the number of triangles in any triangulation of n points.

Let ¢(t) denote the number of constraint chords that
affect the triangle t € DT(V, E). By a simple counting
argument, we have

2

teDT(V,E)

e(t) = t(e).

e¢€E

With the (c, €)-general position assumption, we can
show that t(e) is bounded above by c+ f(¢). First of all,
the number of nonintersecting deep cuts for any circum-

_ circle C(u, v, w) is bounded above f(¢). Each such deep

cut can hide zero or more points behind it, and there-
fore might affect the triangle ¢ = A(u,v,w). Secondly,
the number of shallow cuts for C(u, v, w) is unbounded,
but all the intersections with C(u, v, w) are within the

annulus with radii » and (1 — ¢)r. Fortunately, there
are at most ¢ points there in the annulus, each of which
can be the hidden behind at most one constraint chord
(or shallow cut) that is not blocked by other chords.
Therefore, there can be at most ¢ + f(¢) pairs of one
constraint chord plus one hidden point. Summing over
all possible triangle ¢, the total number of chords that
affect triangles is bounded above by (c + f(¢)) - 2n. O

Theorem 4.4 Consider the DT(V, E) of a point set V
. of n vertices and a set E of m nonintersecting chords.
By deleting the m chords one by one in random order
to compute DT(V), the ezpected number of structural
changes (or number of triangles deleted) in the process
is O(nlogm), under the (c, €)-general position assump-
tion.

Proof. We know that the total number of triangles
affected by i chords at stage i is bounded above by 2(c+
f(€))n, independent of i or m. We assume the deletions
of constraint chords run in stages. In stage 1, there are i
constraints chords left to be deleted. The whole process
runs from stage m down to stage 0. For stage i > 0, the
deletion of an “average” chord (from one of the i chords
remaining) will affect at most 2(c + f(¢))n/i triangles
on the average. Therefore, the total number of triangles
affected throughout the process is:

i w = O(n) Zm: % = O(nlogm).
i=1 i=1

(m}

Corollary 4.5 Given DT(V,E) with V| = N vertices
and |E| = M nonintersecting chords, the M chords can
be deleted randomly one by one in O(N log M) ezpected
time to compute DT(V), under the (c,¢)-general posi-
tion assumption.

Proof. With the help of Theorem 4.4,’the total num-
ber of structural changes is expected to be O(N log M).
Since the time to delete a chord with k < O(N) struc-
tural changes is O(k), the total time to delete all M
chords is expected to be O(N log M). o

Corollary 4.6 Given DT(V) with |V| = N vertices
and a set E of M nonintersecting chords between ver-
tices in V, the M chords can be inserted randomly one
by-one in O(Nlog Nlog M) ezpected time to compute
DT(V,E), under the (c, €)-general position assumption.

Proof. With the help of Theorem 4.4, the total num-
ber of structural changes is expected to be O(N log M).
Since the time to insert a chord with k¥ < O(N) struc-
tural changes is O(klogk), the total time to delete all
M chords is expected to be O(N log N log M). o

5 Bibliography

1. A. Aggarwal, L. J. Guibas, J. Saxe and P. W.
Shor, “A Linear-Time Algorithm for Computing
the Voronoi Diagram of a Convex Polygon”, Dis-
crete Comput. Geom., 4, pp.591-604, 1989.

2. T. J. Baker, “Automatic Mesh Generation for
Complex Three-Dimensional Regions Using a Con-
strained Delaunay Triangulation”, Engineering
with Computers, 5, pp.161-175, 1989.

3. M. Bern, D. Eppstein and J. Gilbert, “Provably

Good Mesh Generation”, Proceedings 31st IEEE
Annual Symp. on the Foundations of Computer Sci-
ence, pp.231-241, 1990.

4. B. M. Chazelle, “A Theorem on Polygon Cutting
with Applications”, Proceedings 23rd IEEE Annual
Symp. on the Foundations of Computer Science,
pp-339-349, 1982.

5. B. M. Chazelle, “Iriangulating a Simple Polygon in
Linear Time”, 31st Annual IEEE Symp. on Foun-
dations of Computer Science, St. Louis, pp.220-
230, 1990.

6. L. P. Chew, “Constrained Delaunay Triangula-
tions”, Algorithmica, 4, pp.97-108, 1989.

7. L. De Floriani and E. Puppo, “An On-line Al-
gorithm for Constrained Delaunay Triangulation”,
‘unpublished manuscripts, May 1991.

8. R. L. Graham, “An Efficient Algorithm for Deter-
mining the Convex Hull of a Finite Planar Set”
Inform. Process. Lett., 7, pp.175-179, 1973.

9. L. Guibas and J. Stolfi, “Primitive for the Manip-
ulation of General Subdivisions and the Computa-
tion of Voronoi Diagrams”, ACM Trans. Graphics,
4, pp.74-123, April 1985.

10. D. T. Lee, “Visibility of a Simple Polygon”, Com-

puter Vision, Graphics, and Image Processing, 22,

Pp.207-221, 1983.

11. D. T. Lee and A. K. Lin, “Generalized Delaunay
Triangulation for Planar Graphs”, Discrete Com-
put. Geom., 1, pp.201-217, 1986.

12. D. T. Lee and B. J. Schachter, “Two Algorithms
for Constructing a Delaunay Triangulation”, Inter.
J. Computer and Inform. Sci., 9, 1980.

13. G. Sibson, “Locally Equiangular Triangulation”,
Computer Journal, 21, pp.243-245, 1978.

14. L. Scarlatos and T. Pavlidis, “Hierarchical Trian-
gulation Using Cartographic Coherence”, CVGIP:

Graphical Models and Image Processing, 54,

pp.147-161, 1992.

175

