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Efficiently Updating Constrained Delaunay Triangulations

Cao An Wang and Y. H. Tsin !

Abstract

The Constrained Delaunay Triangulation of a set of obstacle line segments in the plane is the
Delaunay triangulation of the endpoint set of these obstacles with the restriction that the edge set of the
triangulation contains all these obstacles. In this paper, an optimal ©(log n + k) algorithm for inserting
an obstacle line segment or deleting an obstacle edge in the constrained Delaunay triangulation of a
set of n obstacle line segments in the plane is presented, where k is the number of Delaunay edges
deleted and added in the triangulation during the updates. The above result is based on a linear-
time algorithm for finding the constrained Delaunay triangulation of a specific polygon, called the
Delaunay monotone polygon.

1 Introduction

Delaunay triangulation and its dual, Voronoi diagram, are two important data structures in computa-
tional geometry. The two structures for a set of points (called sites) have been extensively studied [3,
Pp.198-218, 12]. Motivated by geographical interpolation problems, Lee and Lin [7] first investigated
Delaunay triangulation in the presence of obstacles. They proposed an O(n?) algorithm for finding
the constrained (they called generalized) Delaunay triangulation of a set of n line segments as well
as an O(n log n) algorithm for the triangulation of a simple polygon, where the endpoints of the line
segments and the vertices of the polygon are regarded as sites and the line segments and the edges are
regarded as obstacles. Later, the time bound for solving the problem in the first case was reduced to
O(n log n) [4,13,14]. However, whether or not the problem in the second case can be solved in o(n log
n) time is not known [1]. This outstanding open problem for the case of a convex polygon has been
solved by Aggarwal et al. [2], but the problem for the case of a general simple polygon still remains
open. Recently, a linear-time algorithm for the problem of a monotone histogram has been presented
by Djidjev and Lingas [5], and thus the problem of a general simple polygon can be solved in O(n log
r) time for r < n. In this paper, we show a linear-time algorithm for the problem in the case of a
special simple polygon, called the Delaunay monotone polygon. Moreover, the duality of constrained
Delaunay triangulation and constrained Voronoi diagram of a set of line segments is studied in [6].
For updating (that is, inserting or deleting a site in) the Voronoi diagram of a set of n sites,
Aggarwal et al. [p.601, 2] proposed an optimal ©(log n + k) method for deleting a site in the

.diagram, where log n is the time for point location and k is the number of Voronoi edges deleted and
added during the update process. Since inserting a site to the diagram takes obvious ©(log n + k)

time, the diagram can be updated in ©(log n + k) time. By the duality, the corresponding Delaunay
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triangulation can be updated in the same time bound. However, whether or not constrained Delaunay
triangulations and constrained (or called bounded) Voronoi diagrams can be updated efficiently is not
known. Directly using existing algorithms [4,13,14] for updates is inefficient because these algorithms
are required to rebuild the entire triangulation. In this paper, we present an optimal ©(log n + k)
time update algorithm.

For simplicity, we use CDT and CVor to denote the terms: constrained Delaunay triangulation

and constrained Voronoi diagram respectively.

2 Finding the CDT of a special polygon

In Definitions 1 to 4, we shall define what is constrained Delaunay triangulation and its dual, extended
constrained Voronoi diagram. Let L denote a set of non-intersecting line segments (except possibly at
their endpoints) representing obstacles. Let S denote the endpoint set of L.

Definition 1: The distance of seS and z¢R? in the presence of obstacles is determined by

{ d(z,s) if z and s are visible from each other,
di(z,s) =
0o otherwise

Definition 2: The CVor of L, denoted by CVor(L), is a set of Voronoi cells {V(s) | 3¢S}, where
V(s) = {zeR? | di(z,3) < d(z, 8') and di(z,s) # oo, for all & €S, s#s }.

The boundary of a Voronoi cell V(s) is the closure of V(s). A Voronoi edge is a maximal
straight line segment on the boundary of a Voronoi cell. A Voronoi vertex is an endpoint of a
Voronoi edge. The CVor of a simple polygon is a special case of CVor(L) that L is a simple polygon.

Definition 3: Let P be a simple polygon, where the interior of P is on the right hand side of
the directed boundary. Let every edge e of the boundary of P be attached by a sheet SH,, where
SH. is a half-plane on the left hand side of the line extending e and SH., is on the top of R2. Let E
denote the space formed by these sheets and P such that the sheets and the interior of P are pairwise
disjoint. The visibility on E is defined as follows: Two points z and y are visible from each other if for
some e and €' of P, (1) both z,y eSH. or (2) zeSH, and yeSH, and TF crosses exactly e and €’ or (3)
zeSH. and yeP, and Ty crosses exactly e or (4) z,yeP and 77 lies entirely on P. The distance of two
points z and y is defined as the Euclidean distance d(z,y) if z is visible to y, as infinite, otherwise.
The Extended CVor of P on E, denoted by ECVor(P), is defined in the same manner as CVor(L)
on R? with the above distance measurement.

Definition 4: The CDT of L, denoted by CDT(L), is a triangulation of S such that its edge
set contains L, and the circumcircle of any triangle, say Ass’s”, does not contain any element of
§ - {s,s’,s"} visible to all s, s’, and s”. The CDT of a simple polygon is defined similarly.

It has been shown that the straight line dual of CDT(P) is ECVor(P), and one can be obtained
from the other in linear-time [6,13].
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In the following, we shall deal with a special polygon, called the Delaunay monotone polygon. The
corresponding definitions and lemmas are presented.

Definition 5: A polygon P is called a Delaunay monotone polygon iff there exists a straight
line (called the cutting line) which crosses every internal Delaunay edge of CDT(P).

An example of a Delaunay monotone polygon P and its C DT(P) are shown in Fig.2.1a. A Delaunay
monotone polygon may not be simple since an edge (or a vertex) of the polygon may appear on its
boundary twice. But, a simple polygon can be obtained by the standard perturbation method in at
most linear-time since its edges do not cross. A Delaunay monotone polygon may not be monotone
w.r.t. their xy-coordinates. An example of ECVor(P’)is shown in Fig. 2.1b, where P’ is the remaining
subpolygon of P truncated by a cutting line ! of P. If the cutting line does not pass through two
vertices of P as shown in the figure, where vertices p;, p,, p3, and py are cut off so that edges P3P,
and Popg are removed too, then we imagine there exist a point pel at +z., and a point p’el at —z, so
that chain b=(py, ps, ps, p7, e, ps) and p and p’ determine a simple polygon P’. Then, ECVor(P')
and CDT(P') are defined. For simplicity, we use ECVor(b) and ECVor(P') (respectively,C DT(b)
and CDT(P’')) interchangeably.

In the following, we shall show that CDT(P) for a Delaunay monotone polygon P can be found
in linear-time, and C DT(P’) can also be found in linear-time.

Lemma 2.1: Let P be a Delaunay monotone polygon. CDT(P) can be found in O(| P |) time.

Proof: Omitted. O

Fact 2.1: (Aggarwal et al. [p.602, 2]) Given a set S of n sites in the upper halfplane, sorted by
their x-coordinates, the Voronoi diagram on the lower halfplane as well as the sequence of associated
sites can be found in O(n) time.

We will use the following notations in this subsection. Let P denote a Delaunay monotone polygon
and ! be a cutting line of P; P’ and P” denote the two subpolygons divided by !; (we shall consider
P’ only since the cases for P’ and P” are symmetric.) Let Qp/ denote the sequence of those vertices
in P affecting the Voronoi diagram on sheet SH;. Let b or d (or the letters with primes) denote a
subchain of P’. Then, Q, or Qg w.r.t. a properly chosen line can be defined similarly. It is easy to
see that the part of ECVor(P’) on SH is the part of ECVor(Qp:) on SH; by their definitions.

We shall show that Qps as well as the part of ECVor(Qpr) on SH; can be found in O(] P’ |) time
usmg Fact 2.1, then by the duality, CDT(Qp:) can be found in O(] P’ |) time (Lemma 2.2).

Lemma 2.2: Let Qp/ denote the sequence of the vertices in P’ affecting ECVor(P’) on SH;. Qp:
as well as CDT(Qp) can be determined in O(] P’ |) time.

Proof: Omitted. O

Definition 6: A bag is a subchain b= (py,...,p;) of P’ such that pn and p; (which are called
head and tail, respectively) are two consecutive vertices of Qp: and there exists at least a vertex of
b—{pn,p:} which does not belong to Qp:.

Hence, the vertices of Qp+ divide the boundary of P’ into a sequence of bags, denoted by B. If B
is empty, then CDT(Qp/)=C DT(P') obviously. Otherwise, it is necessary to show how to construct



CDT(B). To do so, we first prove that the interior vertices of any bag b of B do not affect the
CDT(b’) of other bag b’ of B, and they also do not affect CDT(Qp:) (Lemma 2.4). Thus, CDT(b)
can be constructed independently of the rest of P’. We then show that CDT(b) can be found in
linear-time (Lemma 2.6). Finally, we combine C DT(b) for all beB and CDT(Qp:) to CDT(P') (by
Lemma 2.4 and Lemma 2.5).

Definition 7 and Lemma 2.3 are used in the proofs of the other lemmas. :

Definition 7: Let b=(p,...,p;) be a bag (w.r.t. [). The forbidden circle of b, denoted by F},
is a circle centered at a point oel with radius opj, such that op; = op;.

Lemma 2.3: Let b=(py,...,p) be a bag (w.r.t. I) of P'. Let V' = (s, ..., vx) be the sequence of
Voronoi vertices of ECVor(P), each of which is determined by three vertices at least one in b and
one in P, where P’ and P” are two subpolygons of P divided by /. In particular, v, is determined by
Ph; Ph+1, and a peP" and v, is determined by p,_;, p;, and a p'eP". Then, (1) no vertex of b—{ps,p:}
can lie inside or on the forbidden circle F}, (2) any veV’ must lie on the area bounded by PO, Op,
and bag b, and (3) all the Voronoi vertices of ECVor(b) not belonging to ECV or(P) lie below V".

Proof: Omitted. O

Lemma 2.4: Let b and b’ be two bags of B. Let p and ¢ be an interior vertex of b and b?,
respectively. Then, 77 is not an edge of CDT(P’).

Proof: Omitted. O

Lemma 2.4 implies that CDT(Qp:) and CDT(b) for any beB can be found independently and
CDT(P') consists of these triangulations. The following Lemma is an extension of that for the standard
Voronoi diagrams.

Lemma 2.5: Let L, and L; be two linearly separable sets of obstacle line segments. Then, given
ECVor(L,)and ECVor(L,), ECVor(L, U Ly) can be found in O(] Ly U Ly |) time.

Lemma 2.8: CDT(b) for any beB can be found in O(| b |) time.

Proof: By applying Lemma 2.2 to b (w.r.t. /, which will be defined), we can identify a sequence
of vertices from b, denoted by Q,, affecting the part of ECVor(b) on sheet SHy, and identify a set of
smaller bags D. We then apply Lemma 2.2 to each of these bags in D again (w.r.t. a properly chosen
line). It can be shown that no smaller bag will remain in any bag d of D. Consequently, this lemma
will follow Lemma 2.4 and Lemma 2.5. We omit the details here. but refer to Fig.2.6. O

' Theorem 2.1: Let P’ and P” be the two subpolygons of a Delaunay monotone polygon P
divided by its cutting line. CDT(P’) and CDT(P") can be found in O(| P |) time.

Proof: By Lemma 2.4, Lemma 2.5, and Lemma 2.6. O

3 The algorithm for updating CDT(L)

Let CDT(L) be the constrained Delaunay triangulation of L, where L is a set of nonintersecting line
segments whose endpoints are regarded as sites and whose line segments are regarded as obstacles.
We consider the insertions and deletions of the endpoints of an obstacle and its open line segment in
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CDT(L) separately. To do so, we maintain a copy of the dual, ECVor(L), of CDT(L), and operate
the updates on ECVor(L) and then obtain CDT(L) from ECVor(L).

(a) The insertion and deletion of a site in ECVor(L).

The method is similar to this for inserting and deleting a site p into a standard Voronoi diagram
of S. We omitted the details here.

(b) The insertion and deletion of an open line segment in ECVor(L).

Lemma 3.1: Let /° denote the open line segment of ! and P; denote the corresponding monotone
Delaunay polygon crossed by {. The difference between CDT(L) and CDT(L U {I°}) or between
CDT(L) and CDT(L - {I°}) is CDT(P).

Proof : Omitted. O

For deleting the open line segment [° of an element ! of L from CDT(L), we identify the two sheets
attached to ! in space E. Then superimpose the parts of ECVor(L) on the sheets to that on the main
plane and merge them by a merge-process stated in Appendix C. Clearly, it takes O(k) time, where k
is the number of Voronoi edges being deleted or being added during the merge process. By the duality,
we obtain CDT(L — {I°}) in O(k) time by updating the proper Delaunay edges.

For inserting the open line segment !° of I to CDT(L), we traverse I and find the Delaunay
monotone polygon w.r.t. ! by counting the Delaunay triangles crossed by I. Let P, be the polygon
and P/ and P/’ be its two subpolygons. Then, C DT(P/) and C DT(P!") can be found in O(| P, |) time
by Theorem 2.1

Theorem 3.1: CDT(L) can be updated in O(log n + k) time, where k =| P, |.

4 Concluding remarks

We presented an efficient algorithm for updating constrained Delaunay triangulations. The algorithm
for finding the constrained Delaunay triangulation of a Delaunay monotone polygon can also be applied
to finding the greedy triangulation of a set of n points in O(n?) time. We omit the details here.
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