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1 Introduction

Many tasks in the physical world require that objects be distinguished strictly through the
sense of touch. For example, a robot on a manufacturing assembly line must pick a specific
part out of a bin using only touch to identify the correct part. A robot designed to perform
quality assurance on a manufactured part probes each dimension using touch to check that it
falls within specified tolerances. In both cases, efficiency is of the utmost importance, so the
robot should make a minimal number of probes.

The idea of using probes to identify or test geometric objects has been explored by various
people in the area of geometric probing [Ber86, CY87, RS90, Ski88]. Although there are many
different kinds of geometric probes, the type of probe we use in this paper is a “point probe”
[RS90]. The input to this probe is a point in Euclidean space and the output is either “positive”,
if the point is inside the object being probed, or “negative” if it is outside.

The idea of using point probes to distinguish objects is closely related to the “helpful
teacher” learning model [SDHK91, GK91] developed in the area of machine learning. Machine
learning algorithms attempt to infer a concept description from a set of examples, and in the
helpful teacher model these examples are produced by a teacher who knows the concept and is
attempting to teach it. The examples produced by the teacher are analogous to the test points
(or point probes) produced by a testing algorithm.

In this paper we describe testing algorithms for two different classes of objects: sets of
disjoint rectangles in 2-D and higher dimensions, and general orthogonal shapes in 2-D and
3-D.

*A complete version of this paper appears as a Johns Hopkins University Department of Computer Science
technical report, JHU-91/23, December 1991.
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2 Testability

An object is a subset of Euclidean space, E%; in particular, it is a subset of a unit box in d
dimensions, since any object can be scaled down until it is contained in a unit box. An object
class is a set Q of objects. In this paper we examine only orthogonal shapes; i.e., polyhedral
in which all edges are parallel to the axes.

Given an object p € Q to be tested and a target object (or model) ¢ € Q, p is consistent
with ¢ on some finite set of test points t ={t;,%3,...,%,} if p and ¢ contain the same subset
of t,i.e;t € qiff t; € pfor 1 < i < m. The error of p with respect to g is given by V(gQp),
where V(p) denotes the d-dimensional volume of an object p and gAp denotes the symmetric
difference of the sets. Thus, the error of the object p is measured as the volume of the region
that forms the symmetric difference between p and q.

Definition. T is a testing algorithm for Q with test set size m if for all € € (0,1) and for
all ¢ € Q, T produces a finite set of points T(g,€) in E? of size no greater than m(e) and
these points have the property that for all p € Q, if p is consistent with ¢ on T'(q, ¢€), then
V(gAp) < €. T(q,¢) is called a test set for q with respect to the class Q. For each t; € T(q,¢),
if t; € g then t; is a positive test point; otherwise, t; is a negative test point.

Thus given a target object ¢ € Q and an error bound ¢ € (0,1), T produces a test set for
g such that any consistent object p has error no more than ¢. If such a 7 and m exist, then
the class Q is testable with test set size m. If T produces a constant size test set (ie.if misa
constant k), then Q is k-testable.

3 Disjoint Rectangles

As a starting point, we consider orthogonal shapes that consist of a fixed number of disjoint hy-
perrectangles. In [RS90, GK91] it was shown that one d-dimensional orthogonal hyperrectangle
can be tested optimally with 2d + 2 test points. This result can be generalized in E2.

Theorem 1. Let RZ be the class consisting of objects composed of n disjoint rectangles in
E2. R? is 6n-testable.

Proof. Given ¢ € R%2 and 0 < € < 1, let wyy, be the width of the narrowest rectangle
(in either the z or the y dimension) and let wgmax be the width of the widest rectangle in
g. Also, let each rectangle r € g be represented by its minimum and maximum corners, i.e.
7 = ((Zmin) Ymin); (Tmax, Ymax))- Let perp.;, be the smallest perpendicular distance between 2
rectangles in ¢, and let a = %min(wmin,perpmin,#—). For each rectangle r € ¢ choose 2
positive test points, one which is a distance a in direction from the minimum corner of
r (called a lower point) and one which is a from the maximum corner of r (called an upper
point). Next choose 4 negative test points by reflecting each positive test point outside the
rectangle in-each direction by a distance of o. -See Figure-tfor an ilustration."

Claim 1a. No rectangle r that is consistent with ¢ on the selected points contains 3 or more
positive points. (See [RS91] for a proof.)

Since no rectangle consistent with g on the selected points contains 3 or more positive
points, the only way to divide the 2n positive points among n consistent rectangles is for each
rectangle to contain exactly 2 positive points. Now we must show that the only way to do this is
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Figure 1: Set of disjoint rectangles with test points

to partition the points the same way ¢ does, for which we need the notion of a “top” rectangle.
For a set of n disjoint rectangles, we define a rectangle 7 = ((Zmin; ¥min); (Zmax, ¥max)) a8 a top
rectangle if the quadrant that has (Zmin, ¥min) as its minimum point contains no part of any
other rectangle in the set. We show next that a top rectangle always exists.

Claim 1b. Any set of n disjoint rectangles contains a top rectangle.

Proof. Define a directed graph G which has a vertex for each rectangle in the set and an edge
r; — r; for each pair of rectangles such that r; is partially contained in the quadrant defined by
the minimum point of r;. The edge relation on G is antisymmetric since if r; - r; and r; — r;
were both edges in G, then the rectangles r; and r; would not be disjoint. Also, G is acyclic.
If it were not, then it would contain a minimal length cycle ry — r; — r3... = rpx — r; of
length at least three. Since the rectangles are all disjoint, r; and r, must be nonoverlapping in
at least one dimension; w.l.g. say the z dimension. This means z; max < Z2min, since r; — ry is
an edge. Similarly, r; and r3 must be nonoverlapping in the z dimension (i.e. Z3 max < Z3,min),
or a contradiction results. That is, an overlapping z dimension would imply ¥2 max < ¥3.min
(since r; and r3 would not overlap in the y dimension), but then (since edge r; — r, implies
Y1min < Y2,max) Yimin < Y2,max < Y3min < Y3,max a0d Z1min < Z1max < ZT2,min < Z3,max, 50
r1 — r3 would be an edge in G which contradicts the assumption that the cycle chosen was of
minimal length. Using the same argument, all rectangles in this cycle must be nonoverlapping
in the z dimension. Therefore, we have % min < Z1max < Z2,min--- < Zkmax < Z1,min, Which
is a contradiction, so G must be acyclic. Since G is acyclic and its set of vertices is finite, there
exists a rectangle with outdegree 0 in G. This rectangle is a top rectangle. Claim1b O

Claim 1c. Anyset of n disjointrectangles-consistent with g on the selected points partitions
the positive points the same way as g does. ‘

Proof Sketch. Any consistent rectangle containing two positive points including the minimum
positive point of some top rectangle r € ¢ must also contain r’s maximum positive point. By
induction, the remaining n — 1 rectangles must partition the remaining positive points in the
same way as q. Claim1lc O
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Figure 2: Set of disjoint rectangles without a top rectangle

Now we return to the proof of Theorem 1. Since a set of n disjoint rectangles that is
consistent with ¢ on the selected points must partition the positive points the same way as ¢
does, the error of this set is bounded by the test points around each rectangle. One consistent
rectangle differs from the corresponding rectangle of ¢ by no more than 40wmax + 402, so the
total error is no more than 4na(wmax + @), which by the choice of a is less than e. u]

4 Higher Dimensional Objects

Surprisingly, the proof used for Theorem 1 cannot be generalized to d dimensions. This is
because the notion of a top rectangle does not generalize to higher dimensions. In fact, even
the method of using test points at opposite corners does not work in general to test n disjoint
rectangles in d dimensions.

Figure 2 illustrates a configuration of three rectangles, r; = ((0,0,0),(3,4,3)),r, = ((-2,0,4),
(3,1,5)),r3 = ((-2,2,0),(-1,3,5)), for which there is no top rectangle. This configuration can-
not be tested usins points near the minimum and maximum corner of each rectangle, since the
three rectangles r; = ((0,0,0),(3,1,5)),r; = ((-2,0,4),(-1,3,5)),r5 = ((-2,2,0),(3,4,3))
will be consistent with it on these points but will have-error greater than € for small enough e.

Guibas and Yao [GY80] showed a similar result by proving that given any set of disjoint
orthogonal rectangles in the plane and a direction vector 0, there exists an ordering of the rect-
angles such that for any distance d, moving the rectangles one by one according to the ordering
by d in the direction of # will not cause any rectangle to intersect another one. However, they
show that such an ordering does not always exist for three dimensional orthogonal rectangles.
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Fortunately, we can still test d-dimensional disjoint rectangles with O(nd) test points using
a different algorithm.

Theorem 2. Let RZ be the class consisting of objects composed of n disjoint rectangles in
E°. R3 is n(4d + 2)-testable.

Test points for a target object in R are chosen in a similar manner to the proof of Theorem
1. Extra negative test points are chosen by reflecting each positive test point outside the object
in 2d directions. The extra negative test points insure that no consistent rectangle contains
positive points from more than one rectangle of the target. The proof is quite similar to that
of Theorem 1. For details see [RS91].

5 General Orthogonal Shapes

In this section we examine how to test general orthogonal shapes that might contain holes.
Some restrictions must be made on objects belonging to the class being tested. For orthogonal
shapes we use the restriction that all objects in the set have the same number of corners, where
a corner for a d-dimensional object is defined as the intersection point of d or more (d — 1)-
dimensional boundary faces of the object. Also we assume that no objects contain degenerate
boundary faces. A boundary face f of an orthogonal object is an ezterior degenerate face
(interior degenerate face) if there exists a one dimensional line ! that has a perpendicular
intersection with f and there exists a distance § > 0 such that for all ¢, 0 < € < §, the two
points on ! that are a distance ¢ from f are both outside (inside) the object.

First we consider orthogonal objects in two dimensions. There are three ways a corner can
result from the intersection of two lines in E2. If only one of the four quadrants formed by the
intersection is interior to the object, then it is a convez corner. If three quadrants are interior,
then it is a concave corner. If two diagonal quadrants are interior, then we consider it to be
the meeting point of two convex corners (see Figure 3).

Theorem 3. Let O2 be the class consisting of orthogonal objects (with or without holes) in
E? with n corners. O2 is 3n-testable.

Proof sketch. Given o € 02 and 0 < € < 1, let Iy, be the length of the shortest side of o,
let Imax be the length of the longest side of o, let dp be the minimum distance between any
two parallel, non-colinear sides of 0, and let dmax be the maximum distance between any two
parallel sides of 0. Let @ = 1 min(l/min, dmin, Y (e 3:“_,.““) )- For each convex corner of o,
choose one positive test point a distance of @ in each direction from the corner, and choose two
negative test points by reflecting the positive test point outside the object in each direction
by a distance of a. Similarly, for each concave corner choose one negative test point and two
positive test points. See Figure 3 for an illustration of an object in O,¢ with its test points.

This method of choosing test points will yield no more than 3n points. To show that any
other object in O that is consistent on the given test peints is-within the error bound of €, we
first show that any consistent object must contain a corner “close” to every corner of o. Next
we argue that by constraining the placement of its corners, a consistent object can only differ
from the target by a slight expansion and by the presence of narrow strips between aligned
corners of the target. The width of these strips and the amount of expansion are determined by
the choice of @, so0 the error of a consistent object can be made less than €. For the remaining
details of the proof, see [RS91). o
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Figure 3: A 2-D object in O;¢ with its test points .

When we consider testing three dimensional orthogonal objects, the task becomes more
difficult. First, there are more than two types of corners in 3D. Also, further restrictions must
be made on the definition of a face. In addition to not being degenerate, we make the restriction
that a face cannot pass through an edge or a corner of an object. This eliminates the possibility
that a face will have two orientations (i.e., that the interior of the object will lie on one side of
the face at one place and will lie on the other side of the face at another place). Since there is
no direct correspondence between the number of faces of an object and the number of vertices,
restricting a class of objects by the number of faces that an object may have is not sufficient
for testing the class. That is, the class F,, of three dimensional orthogonal objects with n faces
is not testable using a number of test points that is a polynomial in only n and not €. For
example, the shape in Figure 4(a) has 26 faces, where faces a, b, ¢, d and e are separate faces.
No matter how close negative test points are chosen to the shape, a consistent object, such as
the one in Figure 4(b), can be found that expands the sides of faces b and d so that the five
faces a, b, c, d and e are merged into one face f. Since this consistent object now has four less
faces than the target object, four additional faces can be added to it to form the protrusion
ending with face h. For ¢ chosen sufficiently small, this protrusion will cause the consistent
object to have error greater than e.

Despite these difficulties, three dimensional orthogonal shapes can still be tested efficiently,
if we use the number of corners to define the class of objects we want to test.

Theorem 4. Let O3 be the class consisting of orthogonal objects in E® with n corners. 03 is
8n-testable.

For a target object in O3, 8 test points are chosen around each corner — one test point in
each quadrant that meets at the corner. These points insure that a consistent ob ject contains
a corner close to every true corner of the target. Therefore the consistent object can only differ
from the target by a slight expansion and the presence of strips. See [RS91] for proof details.
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Figure 4: Test points cannot determine if faces a, b, ¢, d and e are merged
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