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ABSTRACT

It is shown that it is an NP-complete problem to deter-
mine whether a Delaunay triangulation or an inscribable
polyhedron has a Hamiltonian cycle. It is also shown
that there exist Delaunay triangulations and inscribable
polyhedra without 2-factors.

1 Introduction

The existence of Hamiltonian cycles in Delaunay trian-
gulations and inscribable polyhedra is a question of both
practical and theoretical significance. The practical im-
portance stems from the fact that a Hamiltonian cycle
in the Delaunay triangulation of a set of points is a nat-
ural candidate for a short spanning cycle through the
points, and hence might be expected to be a good ap-
proximation for the Euclidean Traveling Salesman Cycle
(ETSC). More sophisticated heuristics for approximat-
ing the ETSC, using the Delaunay triangulation as a
starting point, can be found in [26, 31]. Applications of
Hamiltonian cycles in Delaunay triangulations to prob-
lems in pattern recognition and solid modeling are dis-
cussed in [4, 21, 23, 24].

From a more theoretical viewpoint, there appears to
be a close connection between the structure of inscrib-
able polyhedra and Hamiltonian cycles. Hamiltonicity
is “almost” sufficient for inscribability. For example,
Crapo and Laumond have observed that any Hamilto-
. nian polyhedron is inscribable in a certain degenerate
sense [11, Page 303]. More recently, Dillencourt and
Smith have shown that any 1-Hamiltonian planar graph
is inscribable [16],! and hence any 4-connected planar
graph is inscribable. Conversely, empirical evidence sug-
gests that Delaunay triangulations of moderate size are
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1 A graphis 1-Hamiltonian if it remains Hamiltonian whenever
a vertex is removed.

Hamiltonian with very high probability. It has also been
shown that inscribable polyhedra and Delaunay triangu-
lations have certain Hamiltonian-like properties. For ex-
ample, Delaunay triangulations are 1-tough [15].2 This
implies, in particular, that all Delaunay triangulations
have perfect matchings (1-factors) [15).

The question of whether Delaunay triangulations nec-
essarily have Hamiltonian cycles was posed in [21], [23]
and, in a closely related form, in [30). Counterexamples
satisfying progressively more restrictive conditions can
be found in [19], [12], and [13]. These counterexamples
suggest the computational question: what is the compu-
tational complexity of finding Hamiltonian cycles in De-
launay triangulations? There have been some partial re-
sults aimed at addressing this question 8, 9, 11, 14, 20].
In the present paper, we settle the computational ques-
tion by showing that it is NP-complete problem to de-
termine whether there is a Hamiltonian cycle in a simpli-
cial inscribable graph (Theorem 3.1) or in a nondegen-
erate Delaunay triangulation (Theorem 3.4). We also
strengthen the non-Hamiltonian counterexamples cited
above by showing that there exist inscribable polyhedra
(and Delaunay triangulations) that fail to have 2-factors
(Section 4).

2 Preliminaries

Except as noted, we use the graph-theoretic terminol-
ogy of [5]. V(G) and E(G) denote, respectively, the set
of vertices and edges of a graph G. A Hamiltonian cycle
in a graph is a spanning cycle. A 2-factor in a graphisa
spanning collection of disjoint cycles. The link-distance
between two vertices of a graph is the minimum number
of edges in a path connecting them. A graph is trivalent
if all vertices have degree 3. A plane graph is simplicial,
or mazimal planar, if all its faces are triangles. A cutset

‘in a graph G is a minimal set of edges whose removal
-— increases.the aumber of comporents of G. A noncoter-

minous cuiset is a cutset in which not all edges have
a common endpoint. A dual cycle (dual path) in G is
a cycle (path) in the planar dual of G. A cutset in a
plane graph G corresponds, in a natural fashion, to a
dual cycle.

2A graph G is 1-tough if for any set nonempty set S of vertices
of G, ¢(G - S) < |S|, where c(G — S) is the number of components
of G — S and |S| denotes the cardinality of S.
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The Delaunay triangulation is the dual of the Voronoi
diagram; see [2, 17, 25] for details. In particular, a De-
launay triangulation is nondegenerate if all interior faces
are triangles. An inscribed polyhedron is a convex poly-
hedron all of whose vertices lie on a common sphere. A
graph is inscribable (respectively, Delaunay realizable)
if it can be realized as a combinatorially equivalent in-
scribed polyhedron (respectively, Delaunay triangula-
tion). If G is a plane graph, and f is a face of G, the
operation of stellating the face f consists of adding a
new vertex inside f and connecting all vertices incident
on f to the new vertex. The following lemma, which is
closely related to a result in [6], is an easy consequence
of standard properties of stereographic projection [10].

Lemma 2.1 A plane graph G is Delaunay realizable,
with face f as ils unbounded face, if and only if the
graph obtained from G by stellating f is inscribable.

Our proof also makes use of the following numerical
characterization of inscribable polyhedra:

Theorem 2.2 ([18, 27, 28, 29]) A graph G is in-
scribable if and only it is planar, 3-connected, and
weights w can be assigned to ils edges such that:

(W1) For each edge e, 0 < w(e) < 1/2.

(W2) For each verter v, the total weight of all edges
tncident on v is equal to 1.

(W3) For each noncoterminous cutset C C E(G), the
total weight of all edges in C is strictly greater
than 1.

A weighting satisfying conditions (W1)-(W3) will be
called a proper weighting.

3 Proof of NP-completeness of recognizing
Hamiltonian inscribable graphs

Theorem 3.1 It is an NP-complete problem to deter-
mine whether a simplicial, inscribable graph is Hamil-
tonian.

The problem is clearly in NP, so it is only necessary to
show NP-hardness. The reduction is from the recog-
nition problem for Hamiltonian 2-connected bipartite
trivalent planar graphs (H2BTP), which was shown to
be NP-hard in [1]. Our method extends the construction
used by Chvatal to show that the recognition problem
for Hamiltonian maximal planar graphs is NP-hard [7,
page 427].
.- Our proof proceeds in two stages. First we show that
a restricted version of H2BTP is NP-hard. We then
reduce the restricted H2BTP to the Hamiltonian cycle
problem for inscribable simplicial graphs.

Let G be any 2-connected plane graph. A separating
pairof G is a pair of vertices whose removal causes G to
become disconnected. Define the separator set S of G

to be the set of all vertices that are in some separating
pair of G. A 2-connected, bipartite graph has isolated
same-color separators if the link-distance between any
two vertices in its separator set that have the same color
is at least 4.

Lemma 3.2 If a 2-connected, bipartite, trivalent graph
G has isolated same-color separators, then any vertez in
the separator set of G has ezactly one neighbor in the
separator set.

Proof Let S be the separator set of G, v € G. It
follows immediately from the definition of isolated same-
color separators that G has at most one neighbor in S.
Let w be a vertex of G such that {v, w} is a separating
pair. If w is a neighbor of G, we are done, so assume it is
not. Since G is trivalent, some component of G — {v, w}
contains exactly one neighbor of v. Call this neighbor
u, and let z be some other neighbor of v. By trivalency,
u has at least one neighbor, r, distinct from v and w.
Any path from r to z must pass through either v or w,
and if it passes through v without passing through w
it must first pass through u. So {u,w} is a separating
pair which implies u € S. |

The problem H2BTPX is the problem of determin-
ing whether a 2-connected, bipartite, trivalent, planar
graph with isolated same-color separators is Hamilto-
nian.

Figure 1: Construction used to prove H2BTPX is NP-
complete.

Lemma 3.3 H2BTPX is NP-complete.

Proof Let G be a 2-connected, bipartite, trivalent
plane graph with n vertices. For each vertex v of G, let

.u,.w, and.z be its neighbors. Replace v with the 25-

vertex configuration inside the circle in the right half
of Figure 1, with connections to the three neighbors
of v as illustrated. Let G’ be the graph obtained by
transforming each vertex of G in this fashion (so G’ has
25n vertices). It is easy to see that this transformation
preserves 2-connectedness, bipartiteness, planarity, and
trivalency. G is Hamiltonian if and only if G’ is. Fi-
nally, G’ has isolated same-color separators. This last



statement follows from the fact that if any vertex inside
the circle in Figure 1 other than v/, w’, or z/ is deleted,
there is still a path through the vertices inside the circle
connecting any two of u, w, and z. Hence H2BTP can
" be reduced to H2BTPX in polynomial (actually linear)
time. - u

To complete the prodf-of Theorem 3.1 we reduce
H2BTPX to the problem of detecting Hamiltonian cy-
cles in simplicial, inscribable graphs. Let G be an n-
vertex, 2-connected bipartite trivalent plane graph with
isolated same-color separators. Two-color the vertices
of G red and blue. Let L be the medial graph of G [22].
That is, the vertices of L are the midpoints of the edges
of G, and two vertices of L are joined by an edge iff
the corresponding edges of G are consecutive edges on
a common face of G. Since G is trivalent and planar,
L is planar and regular of degree 4. Every vertex of
G corresponds to a triangular face of L. Call such a
triangular face of L a distinguished triangle. A distin-
guished triangle of L is a red triangle (respectively, a
blue triangle) if it corresponds to a red vertex (respec-
tively, a blue vertex) of G. An s-triangle is a triangle
that corresponds to a vertex in the separator set of G.
An s-vertez is a vertex of L shared by two s-triangles of
L. An s-vertex corresponds to an edge of G connecting
two vertices in the separating set of G. By Lemma 3.2,
every s-triangle has exactly one s-vertex.

Since G is trivalent, n is even. It follows from Euler’s
formula and the regularity of G and L that L has 3n/2
vertices, 3n/2 + 2 faces (of which n are distinguished
triangles), and 3n edges.

We add edges and vertices to L to turn it into a sim-
plicial graph in two steps.

1. Replace each blue triangle with the graph shown
in Figure 2(a), identifying the three outer vertices
of the figure with the three vertices of the triangle.
Replace each red triangle with the graph shown in
Figure 2(b), identifying the three outer vertices of
the figure with the three vertices of the triangle.
Call the resulting graph K.

2. Add new edges to K to obtain a simplicial graph.
This requires triangulating each face that is not
part of a distinguished triangle. The new edges are
added in such a way that no s-vertex is incident on
an edge. This is possible because no two s-vertices
appear consecutively along any face of L. Call the
resulting simplicial graph H.

We claim that H is Hamiltonian if and only if G is.
Suppose H has a Hamiltonian cycle, Z. A path through
a red triangle that visits all interior vertices must visit
all three boundary vertices of the triangle. A path
through a blue triangle may visit all interior vertices
while visiting only two boundary vertices of the trian-
gle (the entry and exit vertices.) Hence any portion of a
path that visits the interior of a red triangle followed by

the interior of a blue triangle must visit four boundary
vertices of interior triangles (including the entry vertex
to the red triangle and the exit vertex from the blue tri-
angle). Since Z can enter the interior of a distinguished
triangle only once, visiting the interiors of all n distin-
guished triangles of H requires visiting all 3n/2 vertices
of distinguished triangles. So Z necessarily alternates
between red and blue triangles, never using any of the
edges of H — K. It follows that the sequence of points
in G corresponding to the distinguished triangles visited
by Z represents a Hamiltonian cycle of G. Conversely, a
Hamiltonian cycle through G corresponds to a sequence
of triangles in H that give rise to a Hamiltonian cycle
in H.

To complete the proof, we must show that H has a
proper weighting, and hence is inscribable. To do this,
we construct a weighting of K, extend it to H, and
verify that the weighting has the required properties.
We begin by assigning each edge of the medial graph
L a weight of 1/72. Since L is 4-valent, these edges
contribute a total weight of 1/18 to each vertex. We
then assign weights to edges inside a distinguished tri-
angles according to Figure 2. There are four cases: (a) a
blue triangle that is not an s-triangle; (b) a red triangle
that is not an s-triangle; (c) a blue s-triangle; and (d) a
red s-triangle. By Lemma 3.2 an s-triangle has exactly
one s-vertex. It may be verified by inspection that this
weighting satisfies all (W1) and (W2) constraints. In
addition, all (W3) constraints corresponding to cutsets
that dualize to cycles remaining within a single distin-
guished triangle are satisfied.

To extend the weighting to H, we let 7 = 1/(288n),
and we process edge e = uv in H — K as follows. We
assign e a weight of 7. By our construction, neither
endpoint of e is an s-vertex. Hence u is incident on
at least one distinguished triangle T that is not an s-
triangle. Decrease the weights of the two edges of T
incident on u by 7/2, and increase the weight on the
third edge of T by the 7/2. Do the same thing with the
other endpoint v. When we process an edge of H — K
in this manner, the sum of the weights of edges incident
on each vertex is preserved, and no edge has its weight
changed by more than 7. Since a total of n—6 edges are
added, all (W1) and (W2) constraints remain satisfied.
All (W3) constraints for dual cycles that remain within
a single distinguished triangle also remain satisfied, as
the weights of edges that are inside distinguished trian-
gles are unchanged.

- - To-wverify the {W3) constraints for arbitrary dual cy-

cles, we first make the following observations, which
may be verified by inspecting Figure 2:

(C1) Any dual path that enters and leaves a distin-
guished triangle picks up a total weight > 1/3 from
that triangle.

(C2) Any dual-path that enters and leaves a distin-
guished triangle in such a way that not all the edges
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Figure 2: Construction and weight assignments used to reduce H2BPX to the Hamiltonian cycle problem for inscrib-
able graphs. (a) A blue triangle that is not an s-triangle. (b) A red triangle that is not an s-triangle. (c) A blue
s-triangle. (d) A red s-triangle. In (¢) and (d), the double circle represents the s-vertex.

it crosses in the triangle have a common endpoint
picks up a total weight > 2/3 from that triangle.

(C3) Any dual-path that enters and leaves an s-triangle
in such a way that all the edges it crosses are inci-
dent on the s-vertex picks up a total weight of 1/2
from that triangle.

Now suppose we are given a dual cycle, Z, that does
not remain within a single distinguished triangle. Z
must pass through at least two distinguished triangles.
There are three cases.

Case 1: Z passes through at least three distinguished
triangles. In this case, the total weight of Z is > 1
by (C1).

Case 2: Z passes through exactly two distinguished tri-
angles, T and U, and these two triangles share a com-
mon vertex, v. If the edges crossed within at least one of
the triangles (say T') do not all have a common endpoint,
then the edges crossed in T have total weight > 2/3 and
the edges crossed in U have total weight > 1/3 (by (C2)

and (C1), respectively.) If the edges crossed within
either triangle have a common endpoint, the common
endpoints must be v. Thus if the edges crossed within
both triangles have a common endpoint, the cycle is
the face ring about v, so the appropriate constraint is
a vertex constraint, rather than a cycle constraint, and
we have already observed that all vertex constrains are
satisfied.

Case 3: Z passes through exactly two distinguished tri-
angles, T and U, which do not share a vertex. In this
case, T and U correspond to a separating pair cutset
of G, so they are both s-triangles. If the edges crossed
in either triangle are not all incident on a common ver-
tex, then the total weight of the edges crossed is > 1,
by (C1) and (C2). Hence we may assume that the edges
crossed within T are all incident on a common vertex
t, and the edges crossed within U are all incident on a
common vertex u. If we were to “slide” Z across t from
T into the adjacent distinguished triangle, we could pre-
serve the property that Z is a dual cycle and only passes



through two distinguished triangles. Consequently, ¢ is
an s-vertex. A similar argument shows that u is an s-
vertex. By (C3), it follows that the edges crossed on or
inside T and the edges crossed on or inside U have total
edge weight 1. Since Z also crosses edges of H — K, and
these edges have positive weight, the total sum of the
crossed edges is > 1.

Since all cycle constraints are satisfied, the weighting
is a proper weighting, so H is inscribable. Since H is
Hamiltonian iff G is, the NP-completeness follows from
Lemma 3.3. ]

Theorem 3.4 It is NP-complete to determine whether
a nondegenerate Delaunay triangulation is Hamiltonian.

Proof It suffices to prove that the graph H con-
structed in the course of the proof of Theorem 3.1 is
Delaunay realizable. Choose one blue triangle of H that
is not an s-triangle. The edges inside this triangle will
be as shown in Figure 2(a). Let T be the triangle at the
center of this figure (the one with all three edges having
weight 1/3). Stellate T, and alter the edge weights so
that the three edges of T have weight 1/6 and the three
edges incident on the stellating vertex have weight 1/3.
Treat all other distinguished triangles as in the proof of
Theorem 3.1. The argument of Theorem 3.1 shows that
the resulting graph in inscribable. Hence H is Delaunay
realizable, by Lemma 2.1 ]

4 An Inscribable Graph with no 2-factor
Consider the 25-vertex graph shown in Figure 3. We

Figure 3: An inscribable graph with no 9-factor.

claim this graph is inscribable and has no 2-factor. To
show inscribability, we describe a proper weighting. For
simplicity, each edge weight is multiplied by 132. Each
edge incident on the degree-3 vertex in the center of the
graph has weight 44, and the three edges connecting two

vertices denoted by triple circles have weight 2. The
remainder of the graph consists of three copies of the
graph shown in Figure 4, weighted as indicated.

Figure 4: Edge weightings for the graph of Figure 3.

The absence of a 2-factor follows from the following
special case of Tutte’s factor theorem [32]:

Theorem 4.1 A graph G fails to have a 2-factor if and
only if the vertices of G can be partitioned into three sets
R, S, and T such that

2T| < ce(R) +2IS| - ) _ dsur(s), (1)
€S
where | - | denotes the number of vertices, c.(R) is the

number of components of R that are joined to S by an
odd number of edges, and dsypr(s) is the degree of s in
the subgraph of G induced by SU R.

In Figure 3, let R consist of the nine light vertices
denoted by single circles, let S consist of the ten dark
vertices, and let T consist of the remaining six vertices
(denoted by double and triple circles). R has three com-
ponents, each of which is joined to S by exactly three
edges, so ¢.(R) = 3. All but one vertex of S has one
neighbor in R, the tenth has none, and S is an inde-
pendent set, so the sum in (1) is 9. Hence the left-hand
side of (1) is 12 while the right-hand is 3 + 20 - 9 = 14,
so (1) holds and the graph has no 2-factor.

If any face containing at least one degree-three vertex
is stellated, then the graph of Figure 3 remains inscrib-
able, so it follows from Lemma 2.1 that there exists a
nondegenerate Delaunay triangulation with no 2-factor.
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