236

Placement and Compaction of Nonconvex Polygons for Clothing
Manufacture *

Victor Milenkovic, Karen Daniels, Zhenyu Li
Harvard University
Center for Research in Computing Technology
Cambridge, MA 02138

1 Introduction

Marker making is a task essential to the manufacture of clothing. Figure 1 is a marker containing the parts
for twelve pairs of men’s pants of assorted lengths and waist measurements. This marker, or cutting plan,
was created by a human in about 45 minutes. The large panels are the front and back pieces of the pants.
The smaller pieces are trim: waist-bands, pocket-facings, belt loops, etc. The pieces are cut out of up to sixty
layers of cloth on a long cutting bed by a reciprocating blade. The efficiency of a marker is the percentage
of area that is utilized: this particular marker has 90.56% efficiency. Current software for automatically
generating markers falls short of human performance by five to ten percent. A single percent of efficiency
pays for the labor involved in creating the marker, and therefore the software is not used in large scale
manufacturing (although it might be used for small runs).

We are currently engaged in the second year of a three year project in automatic marker making. The goal
of this project is to match the efficiency of human-generated pants markers at least 80% of the time. As
we reported last year [6], finding the optimal marker is NP-hard. However, we only have to match what a
human can generate routinely in 45 minutes. Published research in automatic marker making is scarce [10]

71 [5].

1.1 Problem Description

The marker width! represents the width of the bolt of cloth from which the pants will be cut. At present,
there is no standard width for a bolt of cloth. The demand for different sizes and styles also varies in an
unpredictable fashion. The pieces are polygons, and the goal is to place the pieces in a non-overlapping
configuration that minimizes the length of the marker. Our previous report [6] describes certain other
placement restrictions that we do not consider here. Pieces can be flipped about the x or y axis and they
can be rotated 180 degrees. In some cases, the cloth has a direction or “nap”, and only a flip about the x
axis is allowed. Finally, small rotations of up to 3 degrees are sometimes permitted.

From our interviews and observations of people who create markers, we have determined that they place
the large panels first. The large panel placement determines the length of the final marker and hence its
efficiency. Very rarely will a worker increase the length of the marker to fit the trim pieces in. In fact, an
experienced worker will not move the panels at all once he or she starts placing the trim. Instead, the worker

.. will anticipate the needs of the trim during the panel placement phase: guided by experience, he or she will

shift or tilt the panels here and there in a way that opens useful gaps between them.

*This research was funded by the Textile/Clothing Technology Corporation from funds awarded to them by the Alfred P.
Sloan Foundation. -

1As commonly depicted, markers have their long dimension, the length, in the x direction, and they have their short
dimension, the width, in the y direction.

Name: 37077b
Width: 59.75 in

Figure 1: Typical Pants Marker

1.2 Outline

We have partitioned the marker-making task into three parts: panel placement, compaction, and trim place-
ment. We can currently generate panel placements for the most common grid-like configuration: columns
of four with corresponding panels in adjacent columns abutting. Our panel placement algorithms do not
anticipate the needs of trim placement. Instead, we intend to rely on a local optimization technique we call
compaction which acts on the pieces as if they are frictionless solids. Various types of forces can be applied
to the pieces: a constant leftward “gravity” field to compact the overall marker or a repulsion force between
neighboring pieces to open up a gap between them. We are currently working on trim placement algorithms.
These will utilize compaction to open up gaps where trim pieces almost fit. This is a computer-oriented way
of solving the problem that humans solve by experience.

2 The Minkowski Sum

The Minkowski sum [3] [2] [8] [9] [1] [4] is an important part of the preprocessing necessary for fast panel
placement and compaction. Given two planar point sets A and B, the Minkowski sum and difference are
defined as follows:

A+B={a+bla€ Aand b€ B} and A-B={a-bla€ Aandbe€ B}.

The Minkowski sum of two polygonal regions is a polygonal region.

Let A+ u and B + v be copies of A and B translated by u and v, respectively. For what values of u and
v do these two sets overlap? They overlap if and only if there is a point p in common: p =a+ u = b+,
where a € A and b € B. Thus,

v—u=a-b.

Thus it is easy to see that A + u and B + v overlap if and only if v — u lies in A — B. When placing a
piece into a marker, the Minkowski difference can be used to determine the region in which its tenter can be
- placed without causing an overlap (shown in black in Figure 2).

For the data we have, each piece is represented as a polygon with the origin at the center of its bounding
box (minimum-area axis-parallel rectangle). Thus A4 + u is simply a copy of A centered at u. Using the
Minkowski difference, one can rapidly answer the question: Given the Az between the centers of A and B,
what is the minimum Ay such that B is above A? This is easily solved by finding the intersection of the
vertical line £ = Az with the boundary of A — B.

237

238

Figure 2: Regions of Valid Placement for Unplaced Piece

We are currently using a Minkowki sum algorithm which acts on general polygons. We plan to implement a
faster algorithm which exploits the near-convex nature of the pieces.

3 Panel Placement

For a pants marker containing n pairs of pants (typically 9 to 14), there are 2n large pieces corresponding
to the front and back panels of the pants.?> Our panel placement algorithm is based on a general strategy.
Partition the marker into several regions. Select a region of the marker to pack, and pack it as tightly as
possible. Higher priority is given to packings that use hard-to-place pieces. As each region is considered in
turn, there are fewer remaining unplaced pieces from which to select. However, the remaining pieces are
easier to place. The hope is that the pieces get easier fast enough to allow the placement to be done without
backtracking.

Based on our observations of human-generated markers, we make the assumption that panels appear in
columns of four as depicted in Figure 3. These columns correspond to the regions in the general strategy. In
the optimal placement under this assumption, each panel abuts the panels to its left and right; the panels
in the first (leftmost) column abut the left margin; the panels in the last column abut the right margin. In
this configuration, the minimum length of the marker is one-quarter the total length of all the panels. We
call such a configuration grid-like. More than half of the human-generated markers we have examined have
a length equal to or greater than the grid-like configuration.

3.1 The Placement Algorithm

Panel placement is performed one column at a time from left to right. The algorithm will backtrack if a
column of panels cannot be placed. If there is no backtracking, the algorithm runs in O(n®) time. If there
is backtracking, the running time can be exponential. To avoid backtracking, we use the strategy of placing
difficult pieces first. We consider the height (Ay) of a panel to be a measure of difficulty.

As each new column is placed, the algorithm considers every possible stack of four panels with every possible
orientation for each panel. There are 4! orderings .of the panels within each column, and for each panel,
there are four possible orientations. (For a marker with 24 panels, there are about 65 million combinations

- for the first column.) For a particular stack, the x-coordinate of each panel is set so that its x-interval abuts

the x-interval of the panel to its left. For the first column, the panels abut the left margin. In order to be
considered, a particular stack of four panels with orientations must satisfy the following conditions:

1. There must be some choice of y-coordinates for all the panels (with orientations) including the four

2The number of panels to be cut is 2n instead of 4n because the manufacturers exploit the symmetry of pants (the layers of
cloth alternate between face-up and face-down).

e

Name: human
Width: 59.75 in
Length: 272:02 in
Pieces: 24
Efficiency: 69.43%

Figure 3: Panel Placement of Figure 1

tentatively placed panels such that the panels lie inside the marker and do not overlap.

2. The lengths (Az) of the remaining panels must not be inconsistent with an even right margin.

Note that the y-coordinates for the panels in the first column may not be determined until we place the very
last column of panels. On the other hand, once a panel is placed, its x-coordinate (and orientation) is fixed.

The algorithm chooses the stack which maximizes the sum of the heights of the four panels. Ties are broken
by assigning a lower priority to columns with a jagged right boundary, where Jaggedness is the difference
between the maximum and minimum rightmost extent of the four panels.

3.2 Finding Feasible Y-Coordinates

When testing condition (1) above, the algorithm has the following information: a placement of panels into
columns and the x-coordinate and orientation of each panel. It must determine if there are y-coordinates for
all the panels that result in a non-overlapping placement. We observe that in a grid-like configuration each
panel can interact with up to six other panels: the three pieces above and the three pieces below it in the
same, preceding, and succeeding columns. In addition, a panel can interact with the top or bottom of the
marker.

For each pair of interacting panels, there is a minimum Ay between them. This leads to a set of constraints
of the form,

¥ — Y 2 ¢Gij,
where y; is the y-coordinate of the center of the ith panel. The values of the constants c;j are determined

using the precomputed Minkowski differences. Two special variables, yyo: and Ytop, Tepresent the bottom
and top of the marker. These must satisfy an additional constraint,

Yiop — Yoot S W,

where w is the width of the marker.

When the mth column is placed, the constraints on all the panels can be condensed into a set of constraints
on the y-coordinates of the panels in the mth column and ot and yiop. From these alone, the set of
constraints on the (m + 1)st column can be deduced, and so forth. The technique is essentially dynamic
programming, and it has a running time in O(k?) per column, where k is the number of panels in a column.
Since k = 4, a constant, the algorithm can test condition (1) for a particular stack of panels with orientations
in constant time.

239

240

Name: 14:52
Width: 59.75 in
Length: 272.06 in
Pieces: 24
Efficiency: 69.42%

Figure 4: Automatically Generated Panel Placement

3.3 Checking for an Even Right Margin

In order to test condition (2), the algorithm must determine if the remaining panels can be placed into four
rows so that the final right margin is even. This is purely a computation on the lengths of the remaining
panels—there is no check to see if the putative placement will fit within the upper and lower bounds of the
marker.

We choose a specific upper bound (0.25 inch) on the jaggedness of the right margin, but there are more
sophisticated ways of defining evenness: for example, the permitted jaggedness could be bounded by twice
the minimum jaggedness seen so far.

Unfortunately, testing condition (2) is equivalent to bin-packing, and so we must use a heuristic. Our
algorithm divides the remaining panels into four sets, corresponding to the four rows of the marker, and
repeatedly tests to see if swapping any two of these panels will diminish the sum of the squares of the
x-coordinates of the rightmost points in the four rows.

3.4 Results

The algorithm can generate a panel placement for a 24-panel marker in slightly under five minutes on a 28
MIPS Sparc station. Figure 3 depicts a human-generated panel placement, and Figure 4 gives the output of
our program on the same set of panels. The difference in length is negligible. The human marker is more

orderly in the final column, but it should not be a problem to alter the placement algorithm to generate

similar results.

4 Compaction

The process of compaction can be thought of as a physical action on the marker. It can apply leftward
pressure on the right margin to shorten the marker if possible. Or it can “reach in” and open up a gap by

. pushing outward on pieces surrounding the gap. Our trim placement algorithm will be based on compaction:

each gap will be opened as widely as possible before trim is placed inside it.

We accomplish compaction through the use of linear programming. This version allows translation but no
rotation. We are currently developing a version with rotation.

<cslai®

Figure 5: Pieces A and B, the Minkowski Difference (translated to the center of A), and the Convex
Constraint Region for v — u (Magnified 2x)

4.1 Compaction Algorithm

Each piece can be assigned a potential field vector. If piece P;, centered at v;, is assigned the vector f;, then
the potential energy of the system is,
E=-) fi-v.

Any translational motion of the pieces which diminishes this potential energy without introducing an overlap
is desirable. The vector f; represents the force applied to piece P;. For example, to compress the marker from
the right, a leftward force can be applied to the right margin, which can be considered to be a degenerate
. polygon.

Overlap is avoided by means of a pairwise constraint on the centers of neighboring pieces. Let u and v be
the current translations of pieces A and B respectively. The point v — u is constrained to lie outside the
Minkowski difference A — B. This represents a non-convex constraint on the value of v — u, and finding
the minimum potential energy for a set of non-convex constraints is NP-hard. However, selecting a convex
subset of the exterior of A — B in which to constrain v — u results in a problem that can be solved by linear
programming. A judicious choice of the convex subset assures that some progress will always be made if any
progress is possible (except in certain degenerate cases).

The compaction algorithm selects the convex subset as follows. Join the center of A— B to the point v—u by
a line segment. Let e be the edge of the boundary of A — B through which this segment passes. Determine
the longest convex chain 7 of the boundary of A — B which contains e. The point v — u is constrained to lie
in the convex set bounded by v with its first and last segments extended into rays. Pants pieces have the
property that this convex set is always contained in the exterior of A — B. The process of selecting a convex
subset is illustrated in Figure 5.

The objective of the linear program is to minimize the potential energy. After finding a local minimum, the
point v — u may have moved so that its position corresponds to a different convex subset. In this case, the
linear program must be run again. Since each step diminishes the potential energy, this process cannot loop
indefinitely. In practice, only one or two steps are necessary.

4.2 Efficient Determination of Neighbors

Each pair of neighboring pieces A and B adds a set of linear constraints to the linear programming problem.
The compaction algorithm determines neighbors as follows. It puts an upper bound of one inch on the
amount any piece can move in the x or y direction (in a single LP stage). Under this bound, two pieces cannot
interact unless their bounding boxes, expanded by one inch in each dimension, overlap. A straightforward
-+ sweep technique determines the intersections among n rectangles in O(n log n+1) time, where [is the number
of intersections. In most cases, the marker is fairly tightly packed to start with, and the bound of one inch
results in at most a few more iterations of the compaction procedure.

Since the pieces are larger than one inch in size, the neighbor graph is planar, and thus [is linear in n. Each
center is confined to a two-inch by two-inch square, and this constraint is given to the linear programming
package. The square constraints result in a confinement of each center difference v — u to a four by four

241

242

Name: z2out
Width: 59.75 in

Length: 271.12 in
Pieces: 24
Efficiency: 69.66%

Figure 6: Leftward Compaction of Human-Generated Marker

Name: zlout .
Width: 5§9.75 in

Length: 271.05 in

Pieces: 24

Efficiency: 69.68%

Figure 7: Leftward Compaction of Machine-Generated Marker

square. Only the portion of the chain v which lies in this square need be passed to the linear programming
package. Hence the number of constraints is quite small, essentially linear in n.

4.3 Results4

Since the number of constraints is small, less than a second is required for the calls to the linear programming
package. Figures 6 and 7 show the result of a leftward compaction on the panel placements in Figures 3 and
4, respectively, resulting in an improvement of about one inch or 0.2% in each case. Figure 8 demonstrates
how compaction can open a gap between neighboring pieces without affecting the efficiency.

"5 Conclusion

We can perform panel placement for the majority of cases in an acceptable amount of time. We can also
perform compaction swiftly enough to consider using it as a subroutine to the trim placement procedure.
Without the precomputation of Minkowski sums, the running times would be grossly unacceptable. At
the very least, CAD/CAM software designers should perform such precomputations, and provide panel

243

Name: tholeori Name: tholeOwsRe
Width: 59.75 in Width: 59.75 in
Length: 129.79 in Length: 129.79in
Pieces: 42 Pieces: 42
Efficiency: 85.23% Efficiency: 8523%

Figure 8: Gap Opened between Neighboring Panels in order to Fit Trim Pieces

placement and compaction as procedures.

We expect to be able to compute non-grid-like panel placements (Section 3) in the near future, and we hope
to solve the trim placement problem using the same general strategy as we used for panel placement. Any
suggestions and ideas are welcome.

References

(1] D. Dobkin, J. Hershberger, D. Kirkpatrik, and S. Suri. Implicitly searching convolutions and computing
depth of collision. In Proceedings of 2nd SIGAL, 1990.

[2] P.K. Ghosh. A Computational Theoretic Framework for Shape Representation and Analysis using the
Minkowski Addition and Decomposition Operators. PhD thesis, Tata Institute of Fundamental Research,
Bombay, India, 1986.

[3] L. Guibas, L. Ramshaw, and J. Stolfi. A Kinetic Framework for Computational Geometry. In IEEE
24th Annual Symposium on Foundations of Computer Science, 1983.

[4] A. Kaul, M.A. O’Connor, and V. Srinivasan. Computing Minkowski Sums of Regular Polygons. In Pro-
ceedings of the Third Canadian Conference on Computational Geometry, Vancouver, British Columbia,
1991.

[5] Alain Mangen and Nadine Lasudry. Search for the Intersection Polygon of any Two Polygons: Appli-
cation to the Garment Industry. Computer Graphics Forum, 10:195-208, 1991.

[6] Victor Milenkovic, Karen Daniels, and Zhenyu Li. Automatic Marker Making. In Proceedings of the
Third Canadian Conference on Computational Geometry, 1991.

[7] M. Nakajima and K. Hayashi. Automated Parts Layout Planning in Garment Industry By Using Group
Technology. In Computers in the World of Teztiles, pages 297-310. Textile Institute Annual World
Conference, 1984. - " ' ‘

" [8] J. Serra. Image Analysis and Mathematical Morphology, volume 1. Academic Press, New York, 1982.

[9] J. Serra, editor. Image Analysis and Mathematical Morphology, volume 2: Theoretical Advances. Aca-
demic Press, New York, 1988.

[10] Michikazu Tanaka and Takao Wachi. Computerized Marker Making. Journal of The Teztile Machinery
" Society of Japan, 26(7):74-81, 1973.

