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1 Introduction, Motivation and Summary of Results

Intersection graphs of geometric objects have been both widely studied and used to model
many problems in real life [Ro78]. In this paper we consider intersection graphs of regular
polygons, emphasizing intersection graphs of unit disks. A graph is a unit disk graph iff
its vertices can be put in a one to one correspondence with equisized circles in a plane in
such a way that two vertices are joined by an edge iff the corresponding circles intersect. (It
is assumed that tangent circles intersect.) These graphs have been used to model broadcast
networks [Ha80, Ka84, YWS84] and optimal facility location [WK88]. For example, the
problem of placing & facilities where proximity is undesirable can be.nodeled as the problem
of finding an independent set of size k in a unit disk graph [WK88]. The problem of assigning
distinct frequencies for transmitters with intersecting ranges corresponds to the minimum
coloring problem for unit disk graphs. The minimum dominating set problem corresponds
to selecting a minimum number of transmitters so that all the other stations are within the
range of at least one of the chosen transmitters.

All of the above problems and many others remain NP-hard for unit disk graphs
[CCJ90]. Motivated by the practical importance of these problems, we present fast heuris-
tics with good performance guarantees for a number of such problems including the three
mentioned above. Our heuristics are based on simple geometric properties of unit disk
graphs. It is easy to see that similar properties hold for the intersection graphs of other
regular polygons and geometric objects in higher dimensions. Consequently, our heuristics
can be extended to these graphs as well.

 Our results are summarized as follows:
1. The minimum weighted vertex cover problem can be approximated to within a factor

of 1.5 of the optimal vaue. (The best known heuristicfor general graphs guarantees
a vertex cover which is within a factor of 2 of the optimal [GJ79, YE85].)

2. The maximum independent set problem for unit disk graphs can be approximated to
within a factor of 3 of the optimal value.
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3. The minimum vertex coloring problem can be approximated to within a factor of 9
of the optimal value for unit disk graphs. In this case, the performance guarantee
remains 9 for all polygons. (Interestingly, our coloring heuristic is also an on-line

" heuristic [Ira91], and hence we obtain a 9-competitive algorithm for on-line coloring
of unit disk graphs. On-line coloring algorithms with constant competitive ratios have
been obtained previously for several other classes of graphs [GL88, S187, KT81].)

4. We present a simple heuristic to approximate the mim’ﬁmm degree Steiner tree to
within an additive constant of 4. (For this problem, the best known heuristic for
general graphs guarantees a difference of O(logn) with respect to the optimal value
[FR92].)

5. The minimum dominating set problem for unit disk graphs can be approximated to
within a factor of 5 of the optimal value. The same heuristic also provides a per-
formance guarantee of 5 for the minimum independent domination problem. This
heuristic can be modified to obtain another heuristic which has a performance guar-
antee of 10 for both the minimum total domination and the minimum connected
domination problems. (Whether constant performance guarantees are obtainable in
polynomial time for the dominating set problem for general graphs is a well known
open question. Irwing [Ir91] has shown that that the minimum independent domina-
tion problem cannot be approximated to within a constant factor unless P = NP.)

6. For intersection graphs of isothetic unit squares, the maximum independent set and
the minimum coloring problems can be approximated to within a factor of 2. (These
heuristics exploit the fact that the corresponding optimization problems can be solved
efficiently for interval graphs [Go80].)

The remainder of the paper is organized as follows. Section 2 contains definitions and
preliminaries. Section 3 discusses some of the approximation algorithms. Section 4 contains
concluding remarks. Due to space limitations, only a few proof sketches are included.
Detailed proofs will appear in the full paper.

2 Definitions and Preliminaries

The definition of unit disk graphs given above, is referred to as the intersection model
[CCJ90]. In addition, we will also use the proximity model [CCJ90] in which the nodes
of the graph are in one-to-one correspondence with a set of points in the plane, and two
vertices are joined by an edge iff the distance between the corresponding points is at most
some specified bound. '

In the intersection model, we assume that the radius of each disk is r. It is easily seen
that two such disks in the plane intersect iff the distance between their centers is at most
2r. Thus one can translate a description of a given unit disk graph in the intersection
model into a description in the proximity model and vice versa in linear time. throughout
this paper, we assume that a unit disk graph is specified using one of the above models.
(We note that it is open whether unit disk graphs can be recognized in polynomial time

[CCJ90).)
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We assume that the reader is familiar with the definitions of standard graph theoretic
optimization problems such as minimum vertex cover, maximum independent set, minimum
coloring and minimum dominating set as given in [GI79].

We use K, ; to denote the complete bipartite graph with p and g nodes in the two sets of
the bipartition. We also use K, to denote the clique with r nodes. Given a graph G(V, E)
and a node v, we use N(v) to denote the set of nodes adjacent to v; we refer to N(v) as the
neighborhood of v. For a graph G(V, E) and V' C V, G(V’) denotes the vertex induced
subgraph of G. Henceforth, we assume that |V| = n.

Most of our heuristics are based on a forbidden subgraph property of unit disk graphs.
The proof of this property relies on a geometric observation concerning packing of unit
disks in the plane. (The problems of packing and covering by geometric objects have been
of interest to researchers for some time. See [CS88] for more on this subject.)

Lemma 2.1 Let C be a circle of radius r and let S be a set circles of radius r such that
every circle in S intersects C and no two circles in S intersect each other. Then, |S| < 5.

Sketch of Proof: Suppose |S| > 6. Let s;, 1 < i < 6, denote the centers of any six circles
in S. Let ¢ denote the center of C. Denote the ray cs; by r; (1 £ i £ 6). Since there are six
rays emanating from c, there must at least one pair of rays r; and rj such that the angle
between them is at most 60°. Now, it can be verified that the distance between s; and s
is at most 2r, which implies that circles centered at s; and s; intersect, contradicting our
assumption. Thus |[§| < 5. =

In [CS88] a similar parameter called the kissing number 7; is defined as the maximum
number of non-overlapping unit balls in R9 that can be arranged so that all of them touch
a central ball. It is well known that 3 = 1 and 7 = 6. The known bounds for higher
dimensions are not quite as tight. Lemma 2.1 also follows from the fact that 7, = 6. An
immediate consequence of the lemma is the following.

Lemma 2.2 Let G(V, E) be a unit disk graph. Then G cannot contain an induced subgraph
isomorphic to Ky ¢ (i.e., G is claw free for claws of size 6). m

Lemma 2.2 implies that in any unit disk graph, the size of a maximum independent set
in the subgraph of G induced on the neighborhood of any vertex is at most 5. The next
lemma, proven in a manner similar to that of Lemma 2.1, shows that the neighborhoods of
certain nodes in a unit disk graph have even smaller independent sets.

Lemma 2.8 Let-G be a unit diskgraph,und et v be a-vertez such that the center of the unit
disk corresponding to v has the smallest X -coordinate. The size of a mazimum independent
set in the subgraph induced by N(v) is at most 3. @&

Another combinatorial observation about unit disk graphs is stated in the following
lemma. The proof is similar to that of Lemma 2.1 and is omitted due to lack of space.



Lemma 2.4 Let G(V, E) be a unit disk graph. Then G cannot contain an induced subgraph
isomorphic to K23. ®

3 Approximations

To illustrate our ideas, we discuss two heuristics, one to approximate maximum indepen-
dent set and the other to approximate minimum coloring. The approximation algorithms
are presented for unit disk graphs. Comments indicating how they can be extended to
intersection graphs of other regular polygons are included. For simplicity, we often do not
distinguish between a vertex of a unit disk graph and its corresponding disk.

3.1 Approximating Maximum Independent Set

Since unit disk graphs are K g free, one can use the algorithm in [Ho85) to obtain a bound
of 5. However, we can do better for unit disk graphs because of the additional geometric
structure they possess.

The approximation algorithm (which we call IS) begins by forming a list L of the centers
of the unit disks in increasing order of their X-coordinates. At each step, the heuristic adds
the first item v from L into the indepedent set and deletes from L both » and the nodes
which are adjacent to v. The algorithm terminates when L becomes empty. The following
theorem, which gives the performance bound of this heuristic, is a direct consequence of
Lemma 2.3.

Theorem 3.1 Let IS(G) and OPT(G) denote respectively the approrimate independent
set produced by IS and an optimal independent set for a unit disk graph G. Then |IS(G)| >
|OPT(G)|/3. =

Similar approximations can be given for other regular polygons and objects in higher
dimensions. Of course, the performance guarantee is a function of the number of sides of
the polygon.

8.2 Approximating Minimum Coloring

The idea here is to divide the plane R? into small non-overlapping square cells (called grid
cells) of equal size. Each grid cell can thus be assigned integer coordinates (%, j), where the
grid cell containing the origin has coordinates (0,0). Knowing the size of a grid cell, we can
easily compute the coordinates of the grid cell containing any given point in R? (assuming
that grid cells are closed). Let = be the radius of the unit disks under consideration. We
choose the grid cell to be a square of side v/2r. By doing so, we ensure that all the circles
whose centers lie in the same grid cell form clique. This helps us to get a lower bound on
the number of colors used in an optimal coloring. Further, it is also easy to optimally color
the subgraph corresponding to each grid cell.

Once we complete the mapping of the circles to grid cells, it is easy to compute the
maximum number (say !) of points in any grid cell. Thus the graph has a clique of size I,
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and so at least [ colors are necessary in any valid coloring. We can obtain a valid coloring
using at most 9/ colors as follows. The 9! colors are partitioned into 9 color classes with I
colors each. We denote these color classes by C;;, where 0 < 4,5 < 2. We group the grid
cells into disjoint tiles, where each tile is a 3 X 3 array of subcells. For vertices within each
tile, we use the above set of 9/ colors. Given a unit disk c, let (i, j.) denote the grid cell
containing the center of c. The color used for ¢ is chosen from the color class C;;, where
t =i, mod 3 and j = j. mod 3. Since each color class has I colors and each grid cell has
at most ! centers, we can assign a distinct color to each disk within a grid cell. Hence we
obtain the following.

Theorem 3.2 The number of colors used by the grid heuristic is no more than 9 times the
colors used by any optimal algorithm. m

We observe that the above heuristic provides a performance guarantee of 9 even when
the unit disks are given one at a time (i.e., under the on-line model). For intersection
graphs of other regular polygons, the size of the grid cell can be appropriately chosen so
that the bound remains 9.

4 Concluding Remarks

We have sketched efficient approximations for two standard problems on unit disk graphs.
Our heuristic for vertex cover uses ideas from [YE85, YE82]. Heuristics for domination
problems rely on Lemma 2.1 and the heuristic for the minimum degree Steiner tree prob-
lem uses depth-first-search. These heuristics can be modified easily to obtain similar bounds
for intersection graphs of other regular polygons and for geometric objects in higher dimen-
sions. In [Ho85] efficient approximations were given for the weighted vertex cover and
independent set problems. Although these heuristics are applicable to unit disk graphs,
our methods exploit the geometric structure of the underlying graph and yield better per-
formance guarantees for most of the problems considered there.

In [HM85] approximation schemes were presented for packing and covering problems
for a set of unit disks. These algorithms were similar in flavor to those of [Ba83] in which
polynomial time approximation schemes were given to solve various graph problems for
planar graphs. It would be interesting to see if one can use a similar approach to design
good approximation schemes for the problems considered here.

Acknowledgements: We thank Prof. Daniel Rosenkrantz, Prof. Richard Stearns and
Venkatesh Radhakrishnan for constructive suggestions.
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