263

The Space of Spheres, a Geometric Tool to Unify Duality Results on
Voronoi Diagrams*

0. Devillers!

Abstract: We show how duality results for generalized
Voronoi diagrams can be proven by only using purely geo-
metric interpretations, without any analytic calculations.

1 Introduction

[7] presented the first result of duality for Voronoi dia-
grams. Many geometric transforms for generalized dia-
grams are now known (see [3] for a very complete survey)
and they have found many applications.

We do not claim to give new results, but we introduce
a tool allowing to have a global view and, above all, a
better understanding of a very large number of duality
results.

For example, F. Aurenhammer [2] introduces the same
duality as ours, between spheres and points, for power
diagrams, but he gives no geometric interpretation to
this, and his justifications are only by analytic compu-
tations. We can give new proofs, avoiding all analytic
calculations, with only geometric reasoning.

We use here a geometric interpretation of spheres as
points in the space of spheres, which is a very powerful
tool, and will probably find many applications in the
future, since it allows to deal with some very general
problems in a simple way (see for example Section 3.5 for
the case of weighted order k& power diagrams, or Section
3.6 for Voronoi diagrams of general manifolds). We can
also deduce algorithmic application in some cases.

We can apply our framework to different types of
Voronoi diagrams, for example the hyperbolic metric (see
(6] for the planar case).

It can also be used to solve problems on circles or
spheres: for example, the determination of the ring with
minimal surface, defined by two cocircular circles, con-
taining a given set of points transforms in the space of
spheres into a linear programming problems.

The necessary mathematical background is summa-

~rized in the appendix.
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2 The Space of Spheres

spheres of
radius 0

Figure 1: The space of spheres

We denote by P the euclidean d dimensional space.
(.,.) is the scalar product in P, and |.| is the eu-
clidean distance between points. A point or a vector
(z1,-..,%i,...,24) of P will be represented as z. Let us
recall the definition of the space of spheres O used in [6].

Let
(S) (z,z) —2(z,®) +x=0 (1)

be the equation of a sphere! S in P. Here ® is a point
of P, namely the center of S. This sphere is represented
by the point S = (®, x) in the (d + 1) dimensional space
0. 7P is identified to the d-hyperplane x = 0 of O.
Notice that the vertical projection onto P of a point
S = (®,x) € O is the center of the sphere, and the
radius rg of S is given by:

power(0, S) = x = (®,®) — r2 (2)

lIn the sequel, we will precise the dimension of a geometric
object by the following convention: a p-object is a manifold of
dimension p, for example the hyperplanes of P will be called (d-1)-
hyperplanes, while hyperplanes of O will be called d-hyperplanes.
There is only one exception to this convention: if no precision, the
word sphere will represent the (d — 1)-spheres in P, since they are
the usual spheres we deal with.
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We present in this section the first properties of 0.
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Figure 2: Pencils of spheres with base points, and limit
points

2.1 The paraboloid II

Equation (2) shows that the point-spkeresin O (spheres
of radius 0) verify: #T ‘

(I 3)

Thus, the set of point-spheres is in O the unit d-
paraboloid of revolution with vertical axis (that is, par-
allel to the x-axis) denoted as Il. A point (®,x) on
Il represents a sphere of P with center ® and radius
0. Therefore points of P are associated with the corre-
sponding point-sphereson Il in 0. If space P is identified
to the d-hyperplane x = 0, the point-sphere is obtained
by raising the point on II. The exterior of II is the set of
real spheres, whereas its interior is the set of imaginary
spheres (with negative square radius) (Figure 1). The
square radius of a sphere S = (®,x) is the difference
of the x-coordinate of the vertical projection of S on II
with x.

(®,8) - x=0

2.2 Hyperplanes in o

Two spheres of P are orthogonal if and only if the two
corresponding points of O are conjugate with respect to
11 (see Appendix). Thus the set of spheres of P orthog-
onal to a given sphere Sy = (®o, xo) of P forms in O

exactly the polar d-hyperplane =g, of point Sy with re-
spect to II. Its equation is obtained by polarizing the
equation of II in Sp:

(7s,) x =2(®0,®) - xo (4)

It is the polar d-hyperplane of the sphere with respect
to II.

7s, N II projects in P onto Sy (Figure 1).

As a particular case, the set of spheres passing through
a point M € P is also the set of spheres orthogonal to
the point-sphere M, which is also mps, the tangent d-
hyperplane to II at M. Each sphere in the lower half
space limited by 7ps (i.e. the half space which does not
contain II), contains M in its interior. For a sphere in
the upper half space, M is outside (Figure 1).

x
s

spheres orthogonal to
both S; and Sz

2

Figure 3: 75, N7g,

2.3 Linesin o

A pencil of spheres, that is the set of linear combinations
of two spheres of P(see Appendix), transforms in O into
the line through the two corresponding points. From
Equation (2), a concentric pencil is a vertical line. More
generally, a pencil of spheres with limit points is a line
hitting II in the two limit point-spheres (Figure 2). A
pencil of spheres with d base points is the common line
of the d polar d-hyperplanes of the base points (Figure
2). A pencil with tangent point @ is a line tangent to II
at the projection of ® on II. -

More generally, if S; and S, are two spheres, the in-
tersection of their polar d-hyperplanes x5, and =g, is
the set of all spheres orthogonal to both S; and S,. All
these spheres are necessarily centered on the chordale
A(S1,S2). Thus x5, N xs, projects on A(S;,S;) (Fig-
ure 3). Lines can be considered as circles with infinite
radius, they correspond to points at infinity in 0.

2.4 The map p;

We denote by p; the transformation in O that maps a
sphere S = (®, x) with radius r in O to a sphere p(S)



having the same center and square radius kr?, for k € IR.
Thus pi(S) = (®,(1 — k) (. ®) + kx)

By using the preceding equation, together with Equa-
tion (4), we can immediately see that the polar d-
hyperplane 75, for a sphere So = (®o,x0) in O, maps
through p; to the d-paraboloid pi(7s,) (Figure 4) of
equation:

(Pe(7s,)) x = (1-k) (®, ®)+k(2 (o, P} —x0) (5)
We have:
pr(rs,) N =ag, NI

L 2}

) € pr(xs,)

Figure 4: The map p;

As a particular case, if Sp is a point-sphere, g, is the
d-hyperplane tangent to II at point (®o, ($o, ®o)), and
pr(ws,) is also tangent to II at the same point.

3 Duality results

We only give a sketch of the results in this abstract, due
to lack of space.

We apply our framework to different kinds of Voronoi
diagrams. The resulting transformation is often already
well known, however, using our framework, the trans-
formation is straightforward and does not require any
calculus. Furthermore, our framework allows an easy
combination of all possible generalizations 6f Voronoi di-
__agrams, such as weighted order k power diagrams. It

may also lead to new efficient algorithms (see the full
paper).

The terms such as distance, or nearest neighbor, refer
in each section to the specific distance § defined in that
particular section. In the sequel, S always denotes a set
of spheres. An element of S is denoted by S or S;. In
some cases, S is restricted to a special class of spheres,
e.g. point-spheres in section 3.1.
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3.1 Voronoi diagrams of point sites

The distance we consider here is the euclidean distance
in P: §(P,Q) = |PQ)|

As noticed in Section 2.2, the set of spheres which do
not contain a given point maps in O into the upper half
space, limited by the polar d-hyperplane of the corre-
sponding point. Thus, if § is a set of sites in space P,
then the set of empty spheres (i.e. the set of spheres
which do not surround any site of S) of space P is in O
the intersection of the corresponding half spaces. It is a
convex polytope Us, whose facets are tangent to II.

For a given point M € P and a site S € S, the in-
tersection of the vertical line through M with =5 gives
the maximum empty sphere centered at M and touch-
ing S (Figure 5). Since the radius of the spheres on the
vertical line increases with falling x, we have:

extremal empty sphere

22

Figure 5: Empty sphere centered on M and touching S

P 1 The intersection of Us with a vertical line® = M
in O gives the sphere with center M and whose radius is
the distance to the nearest neighbor of M in S.

In other words, the projection of Us on P is the
Voronoi diagram of S [8]. This first correspondence in
the space of spheres has been used in [6] to compute
the Delaunay triangulation of a set of sites lying in k
different subspaces, with an output sensitive complexity.

3.2 Power diagrams

The power diagram is defined for a set S of spheres of
P. For a sphere S and a point M in P, we define the
distance §(M,S) from M to S as the power of M with
respect to S: §(M, S) = power(M, S)

In this definition, the spheres of S can be any spheres,
even point-spheres or imaginary spheres. In the case the
spheres reduce to points, § is the squared usual euclidean
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distance, and we obtain the usual Voronoi diagram for
point sites as a particular case of power diagram.

In space P, the power of M with respect to S can
also be seen as the square radius of the sphere which
is both centered on M and is orthogonal to S. In O,
this sphere is the intersection of the vertical line passing
through M and the polar d-hyperplane 75. If we now
consider all spheres in S, the upper envelope of all their
polar d-hyperplanes, or equivalently, the intersection of
the upper half spaces limited by these d-hyperplanes,
form a convex polytope Us, and the closest sphere to M
for distance 6 is given by the intersection of Us with the
vertical line through M.

P 2 The interseclion of Us with a vertical line® = M
in O gives the sphere with center M and whose square
radius is the distance from M 1o its nearest neighbor in

S.

This shows that the power diagram of the set of
spheres S can be obtained by projecting onto P the up-
per envelope of the polar d-hyperplanes of the spheres.

The same result has been proved in [2] in a different
way, with no geometric interpretation.

This allows to derive an output sensitive algorithm
for a constrained set of spheres (see the full paper for a
proof):

Theorem Constructing the d dimensional power dia-
gram of n spheres whose centers are constrained to belong
to k p-subspaces can be done in time and space

T = O (kn?* 4" + kt"(log n)°0)

for any ¢ > 0. where t is the size the output, t'
min(t,nlZ*), ¢ =t —t'. and

1
= —
e
Ifd=3 and p = 2, the time complezity is O(tk logn)

and the space required is O(n). Furthermore, if k = 2,
the time complezily reduces to O(t + nlogn).

¥

3.3 Weighted power diagrams

The sites of S can here be any kind of spheres. Each site
S is assigned a weight w(S). The weighted distance of
a point to a site is now defined as the power divided by
the weight of the site: §(M,S) = B2l

Let S denote a site in S ans let w(S) be its weight.
Consider a sphere Sy (M,x), belonging to the
paraboloid p:‘(gy(”s)' Sm = P ey (S)¢) for some sphere
Sis € ws whose square radius is equal to power(M, S).

. . DOWer(s,M

So the square radius of Sys is %’—l = §(M,S).

Let us now define Us as the upper envelope of the
set of d-paraboloids {p:(g’ (xs), S € §}. Intersecting a
vertical line through M with Us gives the site S which
minimizes 6( M, S).

P 3 The intersection of Us with a vertical ine ® = M
in O gives the sphere with center M and whose square
radius is the distance from M 1o ils nearest neighbor in

S.

The weighted Voronoi diagram of S is thus the pro-
jection on P of the upper envelope of the set of d-
paraboloids {p__(xﬂ,(wp), P e S}.

The first algorithm for computing weighted Voronoi
diagrams for point sites in the plane is due to F. Auren-
hammer and H. Edelsbrunner [4]. and uses a duality that
is somewhat different from ours. In [2], there is also a
duality with the upper envelope of a set of d-paraboloids
for the computation of weighted Voronoi diagrams, but
the d-paraboloids are not the same as ours.

3.4 Affine Voronoi diagrams

By affine Voronoi diagram, we denote Voronoi diagrams
whose bisectors are hyperplanes. F. Aurenhammer has
shown that every affine Voronoi diagram is a power dia-
gram.

In (2], this result is applied to deduce a duality be-
tween weighted Voronoi diagrams for point sites in di-
mension d and power diagrams in dimension d + 1. In
that way, weighted diagrams reduce to non-weighted di-
agrams. We give an example in Figure 6, showing that
this transformation can nevertheless increase the com-
plexity of the problem. We can show a duality between
the weighted diagram in P and a power diagram in O,
and we can compute the corresponding sites (see the full
paper).

However, in many cases, the complexity does not in-
crease, and this transformation can yield powerful algo-
rithms. For example. if the number of possible weights
is smaller than the number of sites, then the output sen-
sitive algorithm stated in Section 3.2 applies to the re-
sulting power diagram.

weight(P,) < 0
weight(Q,) > 0

Figure 6: Linear weighted diagram mapped onto a
quadratic power diagram



3.5 Order k power diagrams

The sites of S can always be any spheres, and the dis-
tance is: 6(M, S) = power(M, S)

In the order k Voronoi diagram, the regions are asso-
ciated to subsets of S of cardinality k.

F. Aurenhammer and H. Imai [5,1] use a duality for
the computation of these diagrams. Our interpretation
allows to give an easy proof. The following relation, for
k elements S;,...,S; € S is given in the appendix:

k k
%Z power(M, S;) = power (M, % Z S.-) :

i=1 i=1
Let S; denote the set of the centers of mass in O of
all possible k-tuplesof spheres of S. It follows that the
spheres Sy,...,S;,..., Sk are the k nearest neighbors of
M if and only if the power of M with respect to their
center of mass is smaller than the power of M with re-
spect to the other elements of Si. This means exactly
that the order k power diagram of a set S of spheres is
the usual power diagram of S;. Using (P 2), we deduce:

P 5 The intersection of Us, with a vertical line ® =
M in O gives the sphere with center M and whose square
radius is the average of the powers of M with respect to
the k nearest neighbors of M in S.

Weighted order k power diagram

The powerful tools provided by the space of spheres allow
to easily combine weighted diagrams with order k power
diagrams, which could not be done in a straightforward
manner with the methods previously used in the litera-
ture. We can show that the weighted order k& Voronoi
diagram of a set S of spheres is the weighted diagram of
the centroids of all k-tuples of sites of S (in the compu-
tation of the centroids, each sphere S € S is associated
with a coefficient sy).

3.6 Voronoi diagrams of general mani-
folds

We can now study some very general problems. The
elements of S are now manifolds of any dimensions im-
mersed in P. The distance is the usual distance from a
point M to a manifold Z (|M P)] is the euclidean distance
between M and P):

5(M, 2) = min IMP|

_ In other words, (M, Z) is the radius of the minimum

sphere centered at M and tangent to Z. This sphere can
be obtained as the intersection in O of the vertical line
® = M with the set I'z of all spheres tangent to Z.

Tz is a manifold in O, it is the upper envelope of the
polar planes of the point-spheresof Z. If Z is an analytic
manifold in P, then I'z is an analytic manifold in 0. We
consider the upper envelope Us of the manifolds I'z for
all ZesS.
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P 6 The intersection of Us with a vertical line® = M

in O gives the sphere with center M and whose radius 1s
the distance to the nearest neighbor of M in S.

This can be applied to hyperplanes, portions of hyper-

planes (Figure 7), spheres, portions of spheres. ..

spheres in 'y

21

Figure 7: The manifold 'y for a (d — 1)-hyperplane or
a portion of a (d — 1)-hyperplane
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A Mathematical prerequisites

We only recall here some definitions and properties, without
any proof.

Let IE® be the d dimensional euclidean space and {.,.) the
scalar product in [E9.

Circles and spheres

We assume all the equations of the spheres to be given in an
orthonormal basis, and to be normalized.

Figure i: Power of a point with respect to a sphere

If S is a sphere with center O and radius r, and A is a point,
the power of A with respect to S, power(A,S), is defined
equivalently as (Figure i):

where (amMN)is any line

power(A, S) <m ,AN > intersecting sat Mand N

(#%,aT)
(76,70) - r*
The last definition shows that power(A, M) > 0 if and only

if A is exterior to S.
If S has normalized equation

if ais exterior to sand (aT)
is a line tangent to sat T

d

d
S(M)=Zz?+2a.-z.'+ao=0

=1 =1

we have: power(A,S) = S(A). This implies the following
relation:

< power(4, i) _ (i 1 )Pom(A ems ms?h)
=1 W(S‘) 1 W(Si) z:lk“ -W—(JSFJ

where we denote as Z.'l AiSi the sphere having as equa-
tion the corresponding linear combination of the equations of
spheres {Si, i =1,...,k}, and as w(S;) a weight associated
to each sphere S;.

Let us give another useful property: power(A,S) is the
square radius of the sphere centered on A and orthogonal to
S.

The locus of a point that has the same power with respect
to 2 spheres S; and S; is an hyperplane called the chordale
of the spheres and denoted as A(S), S2) (in the plane, it is
a line called the radical azis). The equation of A(S;, Sz2) is
obtained by substracting the two equations of S; and S,.

A pencil of spheres is a linear family of spheres, i.e. the
equations of the spheres of the pencil are linearly dependant
of a parameter. All pairs of spheres in the pencil have the
same chordale. A pencil of spheres has three equivalent defi-
nitions: it is a linear family of spheres generated by two given
spheres, or the set of spheres that are orthogonal to d given

spheres; if S; and S; are two given spheres, the pencil defined
by Si and S; is also the set of spheres that have the same
chordale with S; than S;. The different kinds of pencnls will
be detailed later.

Polarity

Four points M, N, A, B lying on a common line are said to
form an harmonic division if -}’:,Lg and we write in this
case (M,N,A,B) = M; NB = -1

We can remark that if (M N,A,B) = -1, the sphere of
diameter AB is orthogonal to any sphere passing through M
and N (and symmetrically, the sphere of diameter M N is
orthogonal to any sphere passing through A and B) (Figure

ii).

Figure ii: Harmonic division

M and N are said to be conjugate with respect to a quadric
Qif (M,N,A,B) = -1 where {A, B} = (MN)nQ (Figure
iil). I M is exterior to Q, and if we choose for the line

Figure iii: Conjugate points and polar hyperplane

(MN) a tangent from M to Q, then A = B = N is the
tangent point. The locus of the conjugate of M with respect
to Q is a hyperplane P passing through these tangent points.

In the projective space associated to IEY, the projective
quadric associated to Q is the kernel of a quadratic form gq.
In fact, the conjugation with respect to Q is nothing else that
the orthogonality defined in the projective space by g;

If the equation of Q is:

d

E ai;Tiz; + Zao..'z.' 4+ ag0 =0

1€i<s<d i=1

then the equation of the polar hyperplane P of M with re-
spect to Q can be obtained by polarizingin M the equation

of Q:

d d
ag a;
Zaigmeza + Z -—;l(m.'z, +m,z;) +Z%(z.' +m;) +ag=0
=1 1<i<y<d =1
where M = (m,,...,m4).



