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On Counting Triangulations in d Dimensions

Tamal Krishna Dey!

Abstract

Given a set of n labeled points on S, how many combinatorially different geometric triangu-
lations for this point set are there? We show that the logarithm of this number is at most some
positive constant times nl5l+1 Evidence is provided that for even dimenions d the bound can be
improved to some constant times n%.

1 Introduction

In this paper we consider the problem of counting the number of combinatorially different geometric
triangulations of a fixed set of n labeled points on $¢, the d-dimensional sphere. By this we mean
a triangulation consisting of geometric simplices rather than topological or combinatorial general-
izations thereof. A precise definition will be given below. Let sj(n) denote the maximum number
of geometric triangulations with a fixed set P of n labeled points in S%. A more general type of
triangulations often considered in the literature consists of topological simplices in S%. Let t4(n)
denote the maximum number of topological triangulations of a fixed set of n labeled points in S¢.
Every geometric triangulation of $¢ is also a topological triangulation. Therefore sg(n) < t4(n). On
the other hand, some of the topological triangulations of P are not realizable geometrically. This is
even true if the points can be moved to convenient locations, which is not admitted for the problem
considered in this paper.

Using a result of Goodman and Pollack [3], the bounds for a fixed point set can be extended to
cover all point sets of some fixed cardinality. More specifically, they show that there is a positive
constant ¢ = ¢(d) so that the logarithm of the number of combinatorially different sets of n points in

- §%is at most cnlogn. It appears that the dominant factor in the total number of triangulations is the

number of triangulations of a single point set rather than the number of different point sets. Kalai
[4] proves that for fixed d, the logarithm of the number of topological triangulations for n labeled
points (not necessarily fixed) in $¢ has a lower bound of clnng and an upper bound of (:2nr’2d"| logn.
where ¢; and c; are some positive constants. This implies an upper bound of el log n for log s4(n).
In general we will use ¢ with or without index for positive constants.

Another quantity related to sy(n) is 74(n), the maximum number of geometric triangulations
of n fixed and labeled points in R4, the d-dimensional real space. It is fairly easy to establish a
correspondence between geometric-triangulations in S% and -R¢-that implies rg(n) < s4(2n), see

section 2.

This paper is organized as follows. Section 2 introduces the basic definitions. §ection 3 presents
an observation about intersecting simplices that is used to prove logss(n) < enl2] when d is odd.
For even d we generalize a technique inspired by the work of [1] where it was used to prove that
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log s2(n) < en. This technique relies on a result that is known to be true in dimension d = 2 and

which is conjectured to hold for all constant even dimensions. Contingent upon this conjecture, we
d

prove that log s4(n) < en? for even d.

2 Definitions

Think of S¢ as the unit sphere in 9+ centered at the origin, 0. A hemisphere of S is the intersection
of §¢ with a closed halfspace in ®%+! whose bounding hyperplane contains o. Any collection V of k
points in §¢ is a.i. if V U {0} is affinely independent in R4+1. V defines a unique great sphere in S¢,
namely the intersection of $¢ with the affine hull of V U {0}. If V is a.i. then this great sphere is a
(k — 1)-sphere of §%. For 0 < k < d, a spherical polytope in S9 is the intersection of finitely many
hemispheres. It is a k-polytope if it contains k + 1 a.i. points but not k + 2. In what follows, we
_ assume the points in P are in general position. By this we mean that:no hemisphere contains P and
any d + 1 points of P are a.i. :

A spherical k-simplez in S is the intersection of all hemispheres. that contain some set of k +1<
d + 1 points, the vertices of the simplex. Thus, any set V of k+ 1 < d + 1 a.i. points in $9 defines a
unique spherical k-simplex, A = Ay. For 0 < j <k, a j-face of A is the spherical j-simplex defined
by any j +1 of the k + 1 vertices of A. Let A; = Ay, be a spherical k-simplex and Az = Ay,
be a spherical {-simplex. We say that A; and A; intersect improperly if ri(A;) Nri(Az) # 0 where
1i(X) denotes the relative interior of X. If the k + £ + 2 vertices in V; U V; are a.i. then A, and A,
intersect improperly iff A; N A; is not a face of both. Furthermore, we say that. A; and A, cross
if they intersect improperly and V; NV, = §. For P a finite set of point in general position in sS4,
we denote by (},:) the set of all spherical (k — 1)-simplices with vertices in P. A subset T C. (D
is crossing-free if no two spherical (k — 1)-simplices in T cross. A geometric triangulation of P is
defined by a collection of spherical d-simplices Ay; so that

(i) Ay; P =V;, for each ¢,
(ii) no two d-simplices intersect improperly, and

(iii) the union of the d-simplices is $9.

Conditions (i) and (i) require that the collection of spherical d-simplices form.a simplicial: cell
complex, and (iii) requires that S is the underlying space of the complex.

Similar definitions are possible in 9. A set of k +1 < d + 1 affinely independent points defines

a unique k-simplex; namely the-convex hull -of the k +-1-points:- Alternatively, this k-simplex can

be defined as the intersection of all closed half-spaces that contain the k + 1 points. A geometric

 triangulation of a finite point set P C R4 is defined by a collection of d-simplices so that each d-
simplex intersects P in its vertices, no two d-simplices intersect improperly, and the union of the

d-simplices is the convex hull of P. By central projection, such a triangulation in ®¢ can be mapped

to the northern hemisphere of S¢ where it forms a partial triangulation of S¢. Let P’ be the set of

vertices of this partial triangulation. To complete this triangulation we also project the triangulation

from R¢ to the “southern” hemisphere. Let P” be the vertex set. The two partial triangulations
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can be connected by considering the convex hull of P’ U P” in R¢+!. Any face of the convex hull
that has vertices in P’ as well as in P” can now be mapped to a spherical simplex that connects
the two partial triangulations. Given the triangulation in ®¢, this construction implies a unique
triangulation of S¢. Therefore, r4(n) < sq(2n).

3 Simplex Crossings in S¢

Given two spherical simplices that intersect improperly, we prove that there is a lower dimensional
face of one that crosses a higher dimensional face of the other. In precise, we have the following
Lemma which is proved in [2] for simplices in ®¢. In what follows, by a simplex we mean a spherical
simplex and by a triangulation we mean a geometric triangulation in S9.

LeMMA 3.1 For k; + k2 > d, let A1 be a k;-simplex that intersects improperly a k;-simplex As in
$9. There must be a |£|-face of one simplex that crosses the other simplex.

ProOOF. Actually one can prove a stronger statement from which the Lemma follows immediately.
Let k; + k2 > d. Then there is an {y-face of A; that crosses an £;-face of Ay, with ¢; + €, = d. We
omit the proof here. For a proof of similar statement in R see [2].

From the above Lemma we have the following simple observation about triangulations in S¢. We
observe that all higher dimensional faces of a triangulation can be completely determined from its
|]-faces as follows. To enumerate all k-faces of the triangulation, k > [%_l , form all possible k-faces
out of the given |$|-faces. Retain only those k-faces that do not intersect any given |4 |-face. These
are the k-faces of the triangulation. This is true because any k-face of the triangulation must have

£ |-faces from the given set of | % |-faces and any k-face that is not in the triangulation must intersect
another k-face of the triangulation and hence a I_%j -face of the triangulation due to Lemma 3.1.

LeMMA 3.2 logsq(n) ='0(nl§J+1)

Proor. By above observation, any triangulation of n fixed points in §¢ can be completely determined
by the set of | %)-faces of the triangulation. There can be at most 20("&]“) different such sets.

Note that combining Lemma 3.2 with the result of Kalai [4], we get log s4(n) = o(nl'%]) for odd
dimensions and log sz(n) = O(n! 81 {og n) fer-even dimensions. ‘The log n factor in the bound for even

_ dimensions seems unnatural. We show that log s4(n) = O(n‘g) for even d if we assume the following

conjecture. In what follows we assume d is even and u = %.

CONJECTURE 3.1 Let T be a set of crossing free u-simplices with n vertices in $¢. Then |T| = O(n*).
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Clearly, |T| = O(n**!), and it is known that |T| = O(n*) if T forms a subcomplex of a tri-
angulation [5]. Furthermore, a recent result of Zivaljevi¢ [6] implies that |T| = O(n*+!~¢) where
€= (%)“. Note that since two u-simplices in §¢ can intersect only in a point, improper intersection
and crossing imply the same thing for them. The following Lemma establishes an important fact
about the number of crossings in a set of ¢ u-simplices with n vertices. Let P be a set of n points
in §¢ and z(9(P,T) denote the maximum number of u-simplex crossings in a set T of ¢ u-simplices
with vertices in P. Define z(9(n,t) = Min|pj=p |T|=t(P, T). The next lemma. follows from our results
in [2] where we proved a stronger version of it.

LeEMMA 3.3 If the maximum size of any set of crossing free u-simplices with n vertices is ¢;n*+1-?
(for some constant 0 < § < 1) then there exists a constant ¢, so that z(¥)(n,t) > c;,;(zu’_‘l_z)(cij)‘y

where t > ezn®t1-% vy =14 %, and c3=¢; + 1.

Applying the pigeon-hole principle on the lower bound of z(d)(n,t) we get that there is at least
one u-simplex that intersects many other u-simplices. This is stated in the following Lemma.

LEMMA 3.4 Let T be aset of ¢ u-simplices in §%. There exists a u-simplex that crosses Q(;.,—f;%my)
other u-simplices where ¢ > ¢3n**1~¢, and n is the size of the vertex set.

4 <Crossing Free Simplices
Using conjecture 3.1 in Lemma 3.4 we get that there exists a u-simplex in T that intersects Q(nv‘",%y)

u-simplices. Using this fact we deduce that for even d, there are at most 20("") crossing free sets of
u-simplices with n fixed vertices in §9. Define F(t) as the largest number of crossing free subsets
of u-simplices that can be chosen from ¢ u-simplices in S with n fixed vertices. Since the set of
u-simplices of a triangulation completely determines it, an upper bound on F(t) for t = (“_’:_1) also
gives an upper bound on the number of triangulations with n vertices in S¢.

LEMMA 4.1 Assuming Conjecture 3.1, F(t) = 2°("*) for any even d.

ProoF. Let ¢ be large enough so that there is a u-simplex that crosses at least % other

u-simplices if t > cn* > c3n®. Assuming conjecture 3.1, we can always find such a u-simplex due to
Lemma 3.4.

~Case 1. t < cn®.
In this case we have F(t) < 2t < 27",

Case 2. t > cn®. In this case we prove that F(t) < C™ f(t) where C = (2c)(°+c“") and f(t) =
nu(ut1)
(75)” ™ . We show later that f(t) < 1 for esn® < ¢ < (,},) implying F() = 20(""). We use

induction.
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Base Case: cn* <t < 2cn®.
In this case we have

F) <2 < (20 (5 L= £(1) provided ¢ > 2

IA

en¥(u+1)
(2c)°"“(2c)‘e'v?5‘ 7t
(20)(c+”‘_1'r)"“f (t) < C™ f(t), where C = (2,_-)“‘*;&7).

Inductive step: t > 2cn®.
. . . ut1 . .
Since there is a u-simplex that crosses at least ;"l,‘i, other u-simplices, we have

(.u + 1)t“+1

F(t) S F(t - 1)+ F(t - i

Let t = kn* where 2¢ < k < n.

u+1 ) u+1u(utl)
t_(u+1)t kn“—(u+1)k n

cnu(utl) cnu(u+l)
- kn“(l —_ M)
cny
> kn"(l—u+1)>cn“ifc>2(u+1).

So we can apply the inductive assumption and get
(.u + l)tu-!-l .
enu(u+l)

nt u (U + 1)tu+1
e e~ 1)+ 0= ja - AT

C™ f(t) by the property(5) of f(t) where t > 9**1q®,

F(t) < F(it-1)+F(t-

A

A

Taking ¢ to be sufficiently large, this proves that F(z) = 2°(%*) for all ¢ > 0. |

Now we show tha.t)the function f indeed have the properties used in the previous Lemma. Let
en®(u+1
f(@)=(&E)"" =" forn*<z<{,}) and c¢> 0 is a sufficiently large constant.

. (1) f(z) <1 for z > n*.
(2) fi(z) = f(x)mT“,(,.'gl—){ln(;f-’;) — u}. Hence f'(z) > Q“-zi“}';l—)f(z) ifz > ettins,

(3) f(z) — f(z — 1) = f'(y) for some z — 1 < y < = because of the mean value theorem. Therefore
xu+1

f@)-f(z-1)> ——;g;—llf(z —1), provided z — 1 > e*+1n* and hence f(z —1) < m..—.nyf(z)-
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4) f(z - ('c‘:,}(),,ﬂu;l) <c ":(.,"Ll) f(z) where ¢ = (e*+1)?" is a constant assuming ¢ > 2(u + 1). We

omit the proof here.
5) f(z-1)+ f(z - %) < f(z) for > kn* where k is some constant determined as follows.
We have to show that
zu+l clnu(u+l)
gutl 4 cnu(vtl) T S

Let z = kn*, where 2¢ < k < n. We show that the above relation can be satisfied for & > 9*+!.
We must have
c en2u(utl) + 'z pu(u+l) cxttlpu(utl)
ku+l ( c— C’)

(2

1 1_ ou .
< (2)F < 25 e < 9t if ¢ > 2¢.

ce

k

INIA

\%

Combim'hg the results of Lemma 3.2 and Lemma 4.1 we get the following result.

THEOREM 4.2 logsi(n) = O(nr'-%]) when d is odd. Further, assuming conjecture 3.1, logsy(n) =
O(ng) when d is even.
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