Generating Triangulations at Random
Exzended Abstract

Peter Epstein, Jbrg-Riidiger Sack§

School of Computer Science
Carleton University
Outawa, Canada K18 5B6

Abstract
We describe an O(n3) algorithm to count triangulations of a simple polygon and an O(n*) algorithm to
generate triangulations of a simple polygon at random with a uniform probability distribution. As well, we
relate the problem of counting triangulations to existing graph theory problems.

1 Introduction

This paper details some recent results we have obtained in our study of geometrical probability. In particular, we
describe an algorithm for generating triangulations of a polygon uniformly at random. The remainder of this section
provides motivation for this research and develops notation for describing probability distributions of geometric
object generators. In Section 2, we go on to describe our algorithm. A summary of our results and related open
problems are presented in Section 3.

1.1 Motivation

As well as being of theoretical interest, the generation of random geometric objects has applications which
include the testing and verification of time complexity for computational geometry algorithms.
Algorithm Testing

The most direct use for a stream of geometric objects generated at random is for testing computational geometry
algorithms. We can test such algorithms in two ways. The first involves the construction of geometric objects that
the implementer considers difficult cases for the algorithm. For example, a polygon triangulation algorithm based
on a plane sweep may find polygons with horizontal or vertical edges require special case code, making such
polygons likely candidates for exposing errors. The second approach to testing involves executing the algorithm on
a large set of geometric objects generated at random. We expect errors to be exposed if enough different valid inputs
are applied to the algorithm. Although a uniform distribution is not essential, it is important that any one of the
valid inputs may be generated. If there exists a valid input that cannot be generated, then this input may be the only
one for which the algorithm fails. :

Examples of algorithms that would benefit from a generator of geometric objects at random include:

® Algorithms to triangulate simple polygons

® Algorithms to sort Jordan sequences.

* Algorithms to find shortest paths or shortest path trees in a triangulated polygon.

* Algorithms to compute visibility polygon in a triangulated polygon.

Many researchers in computational geometry construct streams of geometric objects generated at random to test
implementations of their algorithms. Fairly crude algorithms are often used to generate these random objects since
. their distributions are not important. However, if these algorithms are not carefully designed, it is possible for the
resulting geometric objects to share some properties that the tested algorithm can take advantage of, leading to
Verification of Time Complexity

In implementation-oriented computational geometry research, we are often given the problem of verifying that an
implementation of an algorithm achieves the stated algorithm time complexity. This is done by timing the

§ Research partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

305



306

execution of the algorithm for various inputs of different sizes. There are a variety of possible inputs of any given
size, and the choice is important, since an algorithm may take more time on some inputs than others of the same
size. If an average execution time is computed over a set of randomly generated objects of a given size, the
relationship between time and problem size will typically follow a curve corresponding to its complexity. We can
then check this complexity against the stated algorithm’s complexity.

For example, consider a linear time visibility algorithm that accepts a simple polygon as input. While some
polygons have many spirals, making the algorithm perform complex steps, other polygons of the same size are
convex, making the algorithm trivial. If we are to get a meaningful graph of time versus polygon size, it is
important that the algorithm is tested on many different random polygons of any given size.

1.2 Notation

We refer to a probability space as (Q.E,Pr), where Q is the sample space, E is the event space, and Pr is the
probability function. The sample space is the set of all elementary events which are the possible outcomes of the
experiment being described. The event space is the set of all subsets of Q that are assigned a probability. The
function Pr:E — R{ defines the probability of events.

We define a simple polygon as P = (vq,v2,...,Vn-1), Where vg,vz,...,vn 1 are the vertices of P in clockwise
order. We define P - vj = (v0....,Vi-1,Vi+1,-..,Vn-1) t0 be the polygon P with the vertex v; removed. We define the
sub-polygons of P as P(ijj) = (Vi,Vi+1,...,vj) if i < j, and P(i,j) = (Vis..4Vn-1,V0,...,Vj) if i > j, where i je [0,n-1].
The sub-polygons of P are the polygons produced by adding an edge between a pair of mutually visible vertices of P.
We define N(P) to be the number of triangulations of the simple polygon P. We refer to edges of a polygon
triangulation of P as (vj,v;). We say a polygon is in standard form if all its vertices are distinct and no three
consecutive vertices are collinear.

A geometric object generator is an algorithm that produces a stream of geometric objects of a given type. We
say that a generator is complete if it can produce every object in a given sample space Q.

1.3 The Uniform Probability Distributions

Probability theory defines both discrete and continuous uniform probability distributions. We are interested
only in the discrete case:

Definition  The discrete uniform probability space for a finite sample space Qy is defined as (Qu.Ey.Pry),
where Ey is the set of all subsets of Qu, and Pry(A) =1/|Qy| for all A e Qy.

In other words, in a finite sample space, a uniform distribution is one in which each elementary event is equally
likely.

2 Generating Triangulations of a Simple Polygon at Random
Generating triangulations of a convex polygon uniformly at random can be done in optimal linear time (see
[Atkinson & Sack 92]). We now describe our O(n%) algorithm for arbitrary simple polygons.
2.1 Definition of Uniformity
Since the sample space is finite, we use the discrete uniform probability distribution:
Definition  All sets of triangulations are events. A polygon triangulation generator is uniform if each of the
triangulations of the polygon has the same probability of being generated.
2.2 Simple Techniques
Two approaches for generating triangulations of a simple polygon are described in this section that do not

" provide uniformity. Both techniques use the set E of possible triangulation edges.

In the first method, we simply generate a uniform random ordering E' (i.e., a random permutation) of the set E,
and add edges from E' to construct the triangulation. If the edge being added crosses edges already added, then the
edge is skipped.

In the second method, we let Ej = E. In the ith step, we select an edge ¢ uniformly at random from E;, add the
edge to the triangulation, and compute E;4) from E; by removing edges that cross the edge e.

Examples show that neither of these techniques provides a uniform probability distribution.



2.3 Computing the Number of Possible Triangulations

The number of triangulations of a convex polygon is fairly straightforward to compute using the Catalan
numbers. For arbitrary simple polygons, counting the number of triangulations can be done using Algorithm 1 to
follow. The algorithm has the additional property that it computes the number of triangulations of all sub-
polygons, which we will find to be crucial for our algorithm.

Algorithm 1
Input A simple polygon P = (vg,v2,...,Vn-1) in standard form.
Output N(P(,j)) for all i,je [0,n-1].
Complexity  O(n3) ime O(n2) space, requires O(n) bit word size.

We use dynamic programming, computing values of N(P(i,i+k)) for increasing values of k, storing the results in
ann X narray T. All index calculations are modulo n. We consider all possible triangles that can be formed from
the edge (vj,vi+k), and count the number of triangulations including each such triangle (v;,vj,vi+k). For a given
triangle, the number of triangulations is N(P(i,j))N(P(j.i+k)) (see Figure 1).

Figure 1 Counting triangulations of P(i,i+k) that include the triangle
(VirVjiVisk)-

1 FOR i:=0TOn-1 DO

2 IF v; and vj42 are mutually visible in P THEN

3 LET TMi,i+2) := 1.

4 ELSE

5 LET Tli,i+2] := 0.

6 END IF.

7 END FOR.

8 FORk :=3TOn-1DO

9 FORi:=0TOn-1 DO

10 IF v; and v,k are mutually visible in P THEN
11 LET Tli,i+k] := T[i,i+k-1] + T[i+1,i+k].
12 FOR j:=i+2 TOi +k-2 DO

13 LET T[i,i+k] := T[i,i+k] + (T[ij)(T(,i+k]).
14 END FOR.

15 ELSE

16 LET TIi,i+k] := 0.

17 END IF.

18 END FOR.

19 ENDIF.

20 RETURNT.

Lines 1 to 7 find all ears of P. Lines 8 to 19 compute N(P(i,i+k)) for increasing values of k. Line 11 counts
triangulations of P(i,i+k) that include either the triangle (v;,v;.+1,Vi+k) or the triangle (v;,Vi+k-1.Vi+k). All other
possible triangles for the vertices v; and v;,y are counted in lines 12 to 14.

307



308

Lemma 1 Algorithm 1 computes Tl[i,j] = N(P(i,j)) for all integers i,j € [0,n-1] for any simple n-gon P.
Proof
Let P be any simple n-gon. If v; and vj4i are mutually visible in P then the algorithm computes:

T[i,i+k]=T[i,i+k- 1]+T[1+lx+k]+ 2‘, (T[l,]])(T[j,l-l‘-k])

We use induction on k. If k = 2 then we have mangles. Such polygons clearly have only one triangulation, so
N(P(i,i+2)) = 1, as given by lines 6 to 10 of the algorithm. If k> 2, then we assume that T[i,i+k'] =
N(P(i,i+k")) for all k' < k. We partition the triangulations of P(i,i+k) into k-1 sets according to which vertex is
the third vertex of the triangle with vertices v; and vij4x. This is clearly a partition since any triangulation of
P(i,i+k) lies in exactly one of these sets. Consider a set in this partition which includes those triangulations
containing the triangle (v;,v;,vi+k) for some j. Every triangulation in this set can be constructed by triangulating
the two polygons (Vj,Vi+1,...,Vj) and (vJ,vﬁ.l, »Vi+k), so the number of triangulations in the set is

N(P(i,i+k~-1))+N(P(i +1, 1+k))+ }; (N P(i, )))(N(P(j.i+k)))

By induction, the algorithm computes ﬂus using the previous results in T.

If v; and vj4k are not mutually visible in P then there can be no triangulation of the sub-polygon P(i,i+k), so
the algorithm correctly computes T[i,i+k] = N(P(i,i+k)) = 0 since lines 1 to 5 initialize all elements of the T
array to zero, and lines 7 and 13 ensures that no change is made to this initial value. O

Theorem 1  Algorithm 1 computes N(P(i.j)) for all integers i.j € [0n-1] for any simple n-gon P in O(n3) time.
Proof omitted for brevity.

Corollary 1  Algorithm 1 computes the number of triangulations of any simple n-gon in O(n3) time.
Proof omitted for brevity.

24 Generating Triangulations at Random
Generator G1
Input A simple polygon P = (vg,v3,...,vn.1) in standard form.
Output A triangulation of P.
Properties Complete, uniform probability distribution.
Complexity  O(n%) time, O(n2) space, requires O(n) bit word size.

We will use Algorithm 1, to compute the number of triangulations of P and of all polygons produced by adding
a triangulation edge to P in O(n3) time.

Given the ability to count triangulations of a polygon in polynomial time, we can easily count the number of
triangulations that include a given edge E by multiplying the number of triangulations of each of the smaller
polygons produced by adding the edge E. One might expect this to lead directly to an algorithm to generate
uniformly random triangulations of P. However, difficulties arise if we choose not to include E, since this implies
that at least one edge that crosses E must be included in the triangulation.

The algorithm is recursive, so we consider adding various edges which break the polygon into parts, each part
being either a triangle or a smaller polygon. If n = 3, then P is a triangle, so the only possible triangulation has no
internal edges. This is the way our recursion will terminate.

If n> 3, we start by finding a convex vertex ve whose neighbors ve.; and ve4) are mutually visible (see

_ Figure 2a). At least two such vertices must exist by the well known Two Ear Theorem. We could triangulate P by

cutting off ve, and using €g = (Ve.1.Ve+1) as a new polygon edge. Let {v(1),v1(2)...-.VI(k)} be the vertices visible
from ve, excluding ve.] and ve.1, in clockwise order around the polygon, starting from ve. Lete; = (ve.v1(i)) for
ie [1,k]. Let €= (ve+1,vii)) forie [1k], if that edge is a possible triangulation edge. Let
Pj= (Ve,Ve+1,---,VI()) a0d Q;j = (Ve,VI(i)s---sVe-1) be the polygons produced by adding edge e; to P (see Figure 2b).
Further, let P'; be P; - vg = (Ve41,....VI(i))-

We now consider the addition of the ear edge eg to a triangulation of P. If the triangulation is to include ¢g then
it cannot include any edge incident on v.. Conversely, if the triangulation does not include eq then it must include



some edge incident on ve. If we choose not to include eg we must now carefully consider the selection of such an
edge e; fori e [1K].

a) Vertex labelling of P from the ear ve. b) The corresponding edge labelling and polygons.
Figure 2 Vertex and edge labelling from an ear.

Let T be the set of all triangulations of P. Let Tg be the subset of T in which the edge e is present. Let T; be
the subset of T in which ¢; is present and no edge ¢; is present where j € [1i). A given T; may be empty, since it
may be that some edge e; cannot be the extreme edge incident on ve. This will be the case if the edge e'; is not a
possible triangulation edge. We will prove that {To,T1,...,Tk} forms a partition of T (see Lemma 2). So,

IT|= i‘_:'-ol'l'il' [To]=N(P-v,), and |T;|=(N(P';)}(N(Q;)) fori 22.

To generate a uniformly random triangulation, we select a partition Tj, and then recursively select a random
triangulation uniformly within that partition. To select a partition, we compute the sizes of the partitions using
Algorithm 1, and then select one such that the probability of selecting any given T; is |T;|AT|. If any given set T;
is empty, then we never select such ani. Once Tj has been selected, proceed as follows:

Case1l Ifi=0then add edge eg to result, and recursively triangulate the convex polygon P - ve.
Case2 Ifi=1andI(1)=e+2 then add edge e to result, and recursively triangulate the convex polygon P - Ve4.

Case3  Otherwise add edges ¢; and ¢'; to result. Recursively triangulate the polygons P'; and Q;.
Lemma 2 {To.T1,....Tk) forms a partition of T.

Theorem 2 G is complete.
Proofs omitted for brevity.

Theorem 3 Gy provides a uniform probability distribution.

Proof
We must prove that each triangulation of P is generated with the same probability. Specifically, this probability
is YN(P).

We use induction on n (the size of P). Our base case is n = 3, in which there is only one triangulation, and
our algorithm finds it. In this case, the probability should be 1/N(P)=1/1=1, as expected. We now assume
n>3. We assume that the algorithm provides a uniform probability distribution for any polygon with fewer
than n vertices. Let t be an arbitrary triangulation of P. We will show that Gy will construct t with probability
I/N(P). :

Case 1 If t includes edge eg: The algorithm will construct t if and only if it selects i = 0 and it selects the '

triangulation of P - v, that, when augmented with the edge eg gives t. The algorithm selects i = 0 with
probability rl‘oMTI =N(P-v,)/N(P) by Lemma 2. By induction, all possible triangulations of P - v will
be constructed with equal probability. Specifically, any one triangulation of P - v will be constructed with
probability I/N(P-v,). These are independent events, so we multiply their probabilities to get the
probability that t is generated, (N(P - v¢ )/N(P){(Y/N(P - v,)) = Y/N(P), as required.

Case 2 If t excludes edge eg but includes edge e3, and I(1) = e+2: The algorithm will construct t if and only if it
selects i = 1 and it selects the triangulation of P - ve4] that, when augmented with the edge e} gives . As in

309



310

Case 1, this implies that t is generated with probability (N(P = ve.1)/NP)YY/N(P - ve4y))=YN(P), as
required.

Case 3 Otherwise, t must include some edge e, such that no edge ey, exists for any b € [1,a). The algorithm
will construct t if and only if it selects i = a and it selects the appropriate triangulations of P'; and Q;, which,
when combined and augmented with edges e, and e'y form t. The algorithm selects i = a with probability
[T [ATI = (N(P))(N(Qi))/N(P) by Lemma 2. By induction, all possible triangulations of P'; will be
constructed with equal probability. Specifically, any one triangulation will be constructed with probability
1/N(P;). Similarly, all possible triangulations of Q; will be constructed with probability 1/N(Q;). These
are independent events, so we multiply their probabilities to get the probability that t is generated,

(NEDINQi) |1 1 )1
( N(P) ](N(PE)IN(Qi))°N<P)

asrequired. O

Theorem 4 G has time complexity O(n%).

Proof omitted for brevity.

Generating triangulations of a convex polygon takes less time because counting the number of triangulations of
convex polygons is easier than for arbitrary simple polygons.

3 Conclusions

While brute-force algorithms to generate triangulations of a polygon uniformly at random require exponential
time, we have developed an O(n4) polynomial time algorithm that works for arbitrary simple polygons. While
efficient algorithms exist for convex polygons [Atkinson & Sack 92], we know of no other polynomial time
algorithm for arbitrary simple polygons. See [Epstein 92] for a complete algorithm that generates triangulations in
O(n2) time, but does not provide a uniform probability distribution. A random triangulation generator is useful for
testing the many algorithms that accept a triangulated simple polygon as input. Examples of such algorithms
include shortest path and visibility query algorithms.

3.1 Open Problems

We are interested in finding a more efficient algorithm to generate triangulations of a simple polygon with a
uniform probability distribution. The intersection graph of the possible triangulation edges of a simple polygon is
known to be a circle graph (as defined, for example, in [Urrutia 80]), and the maximum independent sets of this
intersection graph is known to correspond to the triangulations of the polygon (see [Epstein 92]). We are therefore
interested in efficiently counting the number of maximum independent sets of a circle graph.

We are also interested in finding a polynomial time algorithm to generate triangulations of a point set with a
uniform probability distribution. We have not found a property of point set intersection graphs, such as the circle
graph property for polygon intersection graphs, which would allow the number of maximum independent sets to be
computed in polynomial time. As well, we do not have an algorithm for generating triangulations of a point set
uniformly in polynomial time given the ability to count point set triangulations in polynomial time.

4 Acknowledgments
The authors would like to thank Bruce Richter of Carleton University for his insight into the relationship
between triangulations and circle graphs.
'S5 References

[Akinson & Sack 92] M. D. Atkinson and J.-R. Sack, Generating binary trees at random, Information
Processing Letters, Volume 41, pp. 21-23, North-Holland, 1992.

[Epstein 92] P. Epstein, Generating Geometric Objects at Random, Master’s Thesis, School of Computer
Science, Carleton University, April 1992.

[Urrutia 80] J. Urrutia, Intersection Graphs of Some Families of Plane Curves, Ph.D. Thesis, University of
Waterloo, 1980.



