322

Moldable and Castable Polygons

Arnold Rosenbloom and David Rappaport*
June 18, 1992

Abstract

This paper introduces the concepts of Moldability
and Castability of simple polygons and relates Mold-
ability to Monotonicity. We detail a 6(n) algorithm
for determining all n forward maximal monotone
chains of a a simple polygon and apply this algo-
rithm to the problems of determining 2-Moldability,
2-Castability and the minimum monotone decompo-
sition of a simple polygon [6]. Our results include a
simple optimal algorithm solving the minimum mono-
tone decomposition problem, an optimal algorithm to
determine 2-Moldability and an O(nlogn) algorithm
to determine 2-Castability.

1 Introduction

A statue can be created by pouring wet cement into a
mold, allowing the cement to harden, then removing
the mold. If as well, the 2 pieces of the mold can be
removed by translation then the resulting statue is
2-Moldable. Alternatively, we can form the statue by
taking 2 cast pieces, lie them on their sides, fill them
up with cement and after the cement hardens glue
the pieces together along the flat sides. Of course we
still want to remove the cast pieces without breaking
them. A statue that can be created in such a way is
a 2-Castable statue.

This paper introduces the notions of Moldability
and Castability of simple polygons and investigates
the 2-Moldability/2-Castability of simple polygons.
Our results include theory relating 2-Moldability to
2-Monotonicity and an optimal O(n) time and space
algorithm for determining all forward maximal mono-
tone chains of a simple polygon. Two immediate ap-
plications of this algorithm are determining the 2-

- Moldability of a polygon and a minimum monotone

decomposition[6] for a polygon. In both cases we ex-
hibit an O(n) optimal algorithm. Finally we use the

*Computing and Information Science, Queens University,
Kingston Ontario K7L 3N6 email: rosenblo@qucis.queensu.ca
daver@qucis.queensu.ca

results of [2] to obtain an O(nlogn) algorithm for
determining 2-Castability.

The concept of monotonicity of chains of a poly-
gon will play an important role in the development
of algorithms for recognizing moldable sets. Recently,
this concept has received increasing attention. In (5]
an f(n) time and space algorithm is given for de-
termining if a polygon is monotone. In [4] a simple
6(n) algorithm is given which triangulates a mono-
tone polygon. In [6] an 6(n) time and space algorithm
is given (a consequence of [3]) which determines the
minimum number of monotone chains into which a
given polygon can be decomposed. We extend this re-
sult by supplying a straightforward algorithm which
solves the same problem in the same time and space
bounds.

2 Notation

By a direction in R?> we mean a non-origin point
which will be used to determine changes in position.
By ‘z’ we mean the ray originating at z and parallel
to the direction d. Given 2 points p, g by the ray pq
we mean the set of points on of the half line based on
p and including ¢. For any X C R? 6X,X° X, X
will denote the boundary of X, the interior of X,
the complement of X and the closure of X. By an ¢
neighborhood of z we mean the set of points less than
¢ distance from 2. Given natural numbers i, jand n
by [i...j]n we will mean the set of equivalence classes
from i to j modulo n. When the n is obvious it will be
omitted. A polygon is a finite sequence of segments
(edges) which intersect only at their end points (the
vertices) and only consecutive edges intersect.

Polygon Convention: The vertices are or-
dered so that the interior of the polygon lies to
the left of the edges.

That is, if 2 is internal to some edge then there is
a neighborhood of 2z so that all points in the neigh-
borhood and to the left of the edge are contained in
Pe.

Given 2 points p,q € §P by (p...q) we mean the
set of boundary points of P between p and ¢ in the
natural direction. [p...q) = (p...q)U{p,q}. v and
v’ (appearing in this order) are sequential vertices of
the chain [p...q] then v' — v is a vector induced by
[p...q]. Note that we consider p and ¢ vertices of
[p...q).

2-Moldability will be in some sense the most gen-
eral type of moldability. It corresponds to being able
to fill up a set while a mold is in place and then be-
ing able to remove the mold by translation without
breaking it.

We will say that the chain [p...q] of polygon P
is removable in direction d precisely when Vz €
[p...q] 2 NP° = 0. A polygon P is 2-Moldable
when there are chains [p...q],[g...p] and directions
dpg,dgp such that [p...q] is removable in direction
dpg and [g...p] is removable in direction dgp.

3 Polygons and Monotonicity

A polygonal chain [p...q] is monotone with re-
spect to L if there is some orientation of L so that
the ordering of the projection of the verticesin [p. . .g]
on L agrees with the ordering of the vertices them-
selves. We will say that [p...q] is monotone if there
is some line L so that [p...q] is monotone with re-
spect to L. A chain [p...q] is forward maximally
monotone if it is monotone but any extension of
the chain (at the ¢ end) produces a non-monotone
chain. Similarly, the chain is backward maximally
monotone if it is monotone but any extension at the
p end produces a non-monotone chain. A monotone
decomposition of a polygon is a decomposition of
its boundary into disjoint (except at the endpoints)
monotone chains. A polygon is k-Monotone if there is
a monotone decomposition of the polygon consisting
of k chains. A monotone decomposition is minimal
if the number of chains in the decomposition is min-
imal.

4 Towards

a Computable Characteriza-
tion of 2-Moldability

" We will demonstrate that determining 2-Moldability
is equivalent to determining 2-Monotonicity.

Lemma: If [p...q] is removable in direction d
then [p...q] is monotone with respect to a line
L with L perpendicular to d.

Lemma: If [p...q] is monotone with respect to
aline L, and [q. . .p] is monotone with respect to
aline L, then there exists directions d,, and d,,,
perpendicular to L, and L, respectively, so that
[p...q] is removable in direction dp, and [g...p]
is removable in direction dgp.

Note that if a polygon is 2-Monotone (and so 2-
Moldable) then there are a pair of vertices which de-
termine a 2-Monotone (and hence a 2-Moldable) de-
composition for the polygon. So in order to determine
the 2-Moldability of a polygon we can examine vertex
pairs v;, v; to see if both [v;...v;] and [v;...v;] are
monotone. Unfortunately, this naive algorithm has
complexity at least O(n?).

5 Computing Forward Maxi-
mal Monotone Chains

This section details an optimal O(n) time and space
algorithm for determining all forward maximal mono-
tone chains for a given polygon. This algorithm will
be used to develop linear time algorithms for de-
termining 2-Monotonicity, 2-Moldability and a mini-
mum monotone decomposition of a simple polygon.

5.1 Computing CJ]

Our efforts throughout this section will be in detail-
ing an algorithm which, given a polygon as a sequence
of its n vertices, determines the array C[] which de-
scribes all the forward maximal monotone chains for
the polygon. That is, C[] satisfies C[i] = j if and only
if [v; ... v;] is a forward maximal monotone chain.

Lemma: A chain [p...q] of P is 2-Monotone if
and only if all vectors induced by the chain lie in
some closed half-plane through the origin.

By the wunit circle (O we will mean
{(cos(8),sin(8))|6 € R}. For a, b in the unit circle, by
the angle from a to b; written Zab, we will mean the
set of points from a counterclockwise to b. The acute
angle between a and b; written ZZab, will be the
angle created by the smaller of Zab and Zba. We will
denote the size of Zab by |Zab|. The reader should
realize that there is a natural mapping between the
real interval [0,27) and points on the unit circle. Ei-
ther representation may be used but our algorithms
will assume the [0, 27) representation. The array C[]
is computed by mapping edges 77737 to points ¢; on
the unit circle and solving the equivalent problem.

323

324

Problem: Given a sequence of points <
€o,...,Cn—1 > on the unit circle which satisfies

1.0< ILLc.-c.-...ll <%

2. The complete set {co, ..., cn—1} does not fit
in any angle of size 7

For each i € 1,...,n determine P[i] which satis-
fies

1. The set of points {c;,...,cpp)} fits in some
angle of size .

2. The set of points {c, . . ., cp;), cpfij+1} does
not fit in any angle of size .

These restrictions arise as a result of the mapping
from sequential vertex differences to points on the
unit circle.

(51
Cq
Cc3 co
Cs
C2 Ce

Figure 1: Here we have P[0] = 1, P[1] = 3, P[2] = 3,
P[3] =4, P[4]=1,P[5] =1, P[6] = 1.

For distinct natural numbers a,b€0,...,n —1 let
U; denote the set {ca,aa41,...,c5}. Let M? denote
the set of points of U} which are in some angle formed
by a consecutive pair of elements of U® which appear
farther on in the sequence. Define L = U} — M?

C1
C4
c3 co
Cs
C2 Ceé

Figure 2: Here we
. e
.h:ve U = {co,c1,¢2,¢3,¢4,¢5},M§ = {co,c1} and
' Lo = {c2’ c3, Chcs}

Claim: Assume IU"’l LLlcrcryy| < 7 then there

k=a
are ¢, ¢’ in L} such that Zeo' = U:;f,ééckcg“

This last claim leads to an O(n) time and space
algorithm which computes P[l. The algorithm
maintains a linked list £, three pointers to L,
first,last, current and two indexes i,j. i repre-
sents the next element of P[] to be computed and
J represents the index of the next element of <
€0,-.-,Cn—1 > to be added to £. L will represent
Li™'inasmuch as z € £ & z € 3™, Elements of
L have four attributes, so if z € £ represents c; then
z contains the integer k (referred to as index(z) the
real number c; (referred to as point(z)) and the two
linking pointers f(z) and b(z) connecting L.

Notation: L) is the unique member of £ rep-
resenting c[i].

Using the ideas presented so far, we arrive at the
following algorithm.

Algorithm: Compute P[]
Input:An integer n, an array of angles c[] of size n.
The array cf] is assumed to satisfy all of the require-
ments for < cg,...,Ca-1 > outlined above.
Output:The array P[).

Algorithm:

{Initialize £}

If £LLc[0)c[1] = £c[0)c[1] then
f(Lego)) — Loy -
b(Lefr)) — Lefo)
f(Lepy)) — NULL
b(Lejo)) — NULL
first — L, q)
last — L)

else
b(Lejo)) — Lepy)
f(Lepr)) = Lejo)

(L)) — NULL
J(Leo)) — NULL
last — L)

Jirst — Ly

end if

current — L.y

i—0

je—2

while(i < n)

{A}
while(|Zpoint(first) point(last)| < 7)
{ Add clj] into £ }
if LZc[j = 1]e[j] = Le[j = 1)e[j] then
{B}

remove all points which are forward
from current but contained in
Le[j - 1)c[j] maintaining last

325

and f(Legj-1)) e L represents LI~}
f(Letjy) — F(Legj-11) ,
b(L.fj)) «— Lefj-1) o [point(first) point(last)= U'L:_?Léckc;,...,
f(Legj—1)) — Leij)
if current = last then last — L) e if 2; and 2z, appear in this order in L then
else point(z3) € £ point(z;) point(last).
C .
E i ic[) = 1)e[j] = Lelj)els - 1]} , O(n) time complexity follows from the following
remove all points which are back amortized analysis. The amount of time spent ini-
from current but contained in tia.lizing L is constant. During the addition of C[j]
Le[j]e[j — 1] maintaining first into £ (step B,C) the algorithm may delete neighbors
and b(Lcfj-1)) of current with each deletion taking constant time.
b(Leps)) — H(Lefj—17) We obtain an O(n) amortized cost for these deletions
f(Legj)) = Legj—1) (step A) by noting that each element may appear in
b(Lefj—1)) — Lefj) L at most two times throughout the execution of the
if current = first then first — L. algorithm. The sequence of values j takes on is some
end if prefix of the sequence < 2,3,...,n-1,0,1,2,...,n—
current — L] 1 > in which each m € {0,...,n — 1} appears twice.
j—3j+1modn. Now c[m] is inserted into £ exactly when j = m,
end while consequently it must be the case that c[m] is inserted
{Remove an element from £} . to and deleted from £ at most twice. The code in-
{D} side while loops F and H is executed at most n times
If current = first then throughout the lifetime of the algorithm. The exe-
{E} cution cost of the code inside while loops E and G
while(|Z point(first) point(last)| >) sums up to the number of deletions which take place
k —index(last) and so together they cost O(n). It should be noted
{F} that every time A is executed at least one insertion
while(i # k + 1 mod n and i < n) takes place. Similarly, every time D is executed, at
Plij—j-2 least one deletion takes place and i is incremented by
ie—it1 at least one. Consequently the main while loop costs
end while the algorithm linear time. The space bound comes
Remove the last element from L(update last) from the fact that each c[m] appears at most once in
end while L so the size of £ is O(n).
else Noting that C[i] = P[i]+ 1 we obtain the following
{current = last} theorem.
{G}
while(|Zpoint(first) point(last)| >) Theorem: There is a linear time algorithm to
k —index(first) compute all forward maximal monotone chains
{H} of a given polygon.
while(i # k + 1 mod n and i < n)
Plij—j-2
i+l 5.2 Application 1: Determining 2-
end while Moldability of a Polygon
eml;e:a?: the first element from L(update first) We can now use C[] to determine if a polygon is 2-
end if Moldable/2-Monotone.
end while

Algorithm: Is 2-Moldable?
forie<o0,....,n-1>
if C[Cli]) appears in i,i + 1, ..., C[i]
Correctness of the algorithm follows from the discus- (all numbers taken modulo n) then result(Moldable)

sion preceding the algorithm and the following obser- end for
vations... result(NotMoldable)

5.1.1 Analysis and Complexity

Theorem: There is a linear time and space al-
gorithm which, given a polygon P as an array vf]
of n vertices, determines if P is 2-Moldable and
if so returns a 2-Mold for P.

5.3 Application 2: Minimum Mono-
tone Decomposition

We can also apply our C[] algorithm to the problem
of [6] and solve the minimum monotone decomposi-
tion problem. That is, given a polygon as a sequence
of vertices, determine its minimum monotone decom-
position. Consider the problem of finding a minimum
cover for a circle given the set of n arcs Zz; zc(;) Where
z; € O has coordinates (cos(i2x/n), sin(i27/n)). We
can use a queue to provide the algorithm of [3] with
an ordered sequence of arc endpoints and find a min-
imum cover Lz 2z, - - Lz 2cli,) for O. We
claim that this minimum circle cover corresponds to
a minimum monotone decomposition of P and that
the algorithm takes linear time and space, the same
bounds as [6]. It should be noted that some variant
of the algorithm of [6] might be used to decide 2-
Moldability. However, our algorithm is more straight-
forward.

6 2-Castability

To relate 2-Castability to 2-Moldability we note that
a polygon is 2-Castable when it is 2-Moldable with
mold pieces [p...q] and [g...p] and the segment 7§
stays strictly inside the polygon.

6.1 Deciding 2-Castability

Our purpose here is to establish an O(nlogn) time
and O(n) space algorithm which decides the 2-
Castability of a polygon. We do this by checking
all pairs of points p,qg € 6P which determine a 2-
Mold for P and then checking if p§ C P. It should
be noted that while any 2-Moldable polygon has a
2-Mold which is determined by a pair of vertices, the
same can’t be said of 2-Castable polygons. That is,
there are 2-Castable polygons for which no pair of
vertices determine a 2-Cast.

. 6.1.1 Background Algorithms

[2] provides us with an amortized O(n log n) time and
O(n) space algorithm for the dynamic maintenance
of a convex hull. Its input consists of a sequence of
O(n) possibly intermixed insert, delete and test op-
erations. At each stage of the algorithm a structure

representing the current convex hull is either updated
or queried. The structure supports logarithmic search
queries along the current hull. That is, between each
add and delete operation we can determine any fea-
ture of the convex hull which depends upon a binary
search of the points which determine the hull.

(1] provides us with an algorithm which, given two
convex hulls, determines in O(logn) time, whether
the hulls intersect. The algorithm accomplishes this
through two binary searches, one on each hull.

Notation: An add or delete operation is one of

- add?, del$ where add?, del? means add point
p to the convex hull Q and delete point p from
hull @ respectively. testN represents testing the
intersection of the current hulls.

The above algorithms allow us to compute the se-
quence < 0py,...,0pnlop; € {add,del, testN} > in
O(nlogn) time and space. That is, we can compute
"any interleaved sequence of adds, deletes and inter-
section tests of two hulls in time O(n log n) and space
O(n) provided the add-delete-test sequence is deter-
mined before execution.

6.1.2 Towards an Algorithm

To decide 2-Castability, we will walk two chains
around the polygon, all the while determining if the
chains determine a 2-Cast.

For a given polygon P, the array B[] satisfies
Bli] = j if and only if [vgy...v] is a backwards
maximal monotone chain. We will refer to [B[j] ... j]
and [i...C[i]] as the back chain at j and the for-
ward chain at i respectively.

Given a polygon P =< vy,...,v,_; >, we can re-
verse the roles of left and right and run algorithm
Compute C[] on the sequence < Un-1,Un=-2,...,00 >.
The result of such a process is the array B[J. The time -
and space bounds remain unchanged.

The characterization of 2-Castability leading to our
algorithm comes from the following claims.

Claim: P is 2-Moldable if and only if there is
somei€0,...n—1and j € [i...C[i]) such that
the forward chain at i and the back chain at J
completely cover the boundary of P.

Claim: Given i and j as in the last claim, if
pE€[vi...v;Jand g € [vBm...vc[.-}] then p and
q determine a 2-Mold for P. .

This claim is the key to the correct scheduling of up-
date and test operations generated by our algorithm.
We will maintain two indexes (i, j) into the sequence

of vertices such that j € [i...C[i]]. We also maintain
two dynamic convex hull structures, one correspond-
ing to the convex hull of [vcy;) . . . v;] and another cor-
responding to the convex hull of [v; . .. vgy;)] (referred
to as CH; and C H; respectively). At each main step
of the algorithm we will determine if the pair of chains
[vi ... vcp)) and [vpyj) . . . v;] admit a 2-Mold. That is,
we will test if B[j] € (j...C[i]). If this is the case
then we will determine the kind of intersection (if
any) of CH; and CH;. If the chains do not admit a
2-Mold then we will advance (increment modulo n)
either i or j or both. With each advance, we do some
convex hull maintenance.

When j = i, testing whether B[j] € (j...Cli]]
determines if there is any ¢ € §P such that v; and
¢ determine a 2-Mold. If this is the case, then all
such ¢ will in fact be inside [vpy;} ... vc)]. The kind
of intersection test we will carry out depends on the
type of chain formed by [vgy;). .. vc)-

If the chain is a single point then we want to deter-
mine if the pair of points v;, vcf;) determines a 2-Cast.
The pair will determine a 2-Cast if and only if CH;
and CH; intersect only on the common edge ivcq)-
This will be the case if and only if both hulls contain
the edge T;ocp but with opposite orientations. In
this case the interior of the hulls and all other edges
are on opposite sides of the line determined by the
common edge vertices. The algorithm of [2] admits
such a test in O(logn) time and linear space.

If the chain is not a single point then we want to
determine whether there is any ¢ € [”B[j] .. -vep)
so that the segment ;¢ remains inside the polygon.
Equivalently, we test whether v; is a vertex of CH;
and CH; and check the neighboring vertices to see
if in fact the hulls intersect precisely at this point.
To be exact, we check if the infinite wedges based on
v; determined by v; and its 4 neighbors, the imme-
diate successors and predecessors of v; on CH; and
CHj, intersect. If v; is not a vertex of either hull or
the wedges intersect then the two hulls intersect and
there is no 2-Cast determined by v; and any point in
[vgb-] ‘e vcm].

In all cases outlined above we advance by incre-
menting j. The corresponding hull operations (prior
to changing j) amount to the single delete del.?;”’ and
the possibly 0 or more adds add,,, ... addS 2,
Throughout the execution of our algorithm, if i # j
" then j = i + 1 (taking indices modulo n) so the only
case left to consider is when j = i + 1. Again we
break this into two subcases. If the back and forward
chains overlap at a single point then we determine the
2-Castability status of the polygon in much the way
as the chain overlap subcase in the i = j case above.

Finally if the back and forward chains overlap then we
determine 2-Castability by determining if CH; and
CH; intersect. They don’t overlap precisely when the
polygon is 2-Castable. We advance by incrementing
i, executing the addCH: and the possibly 0 or more
deletes delfc"l_,‘_ " ...dclfc”“'l_‘. We are now back in
the i = j case and we continue. '

It should be clear that after advancing 2n times
(each at logarithmic cost) we have returned to our
starting position and so have checked the entire poly-
gon. The O(n) space bounds apply since the under-
lying structures require linear space provided we can
schedule the test operations before running the algo-
rithm. We can either perform all four intersection
queries on the structure at each step of the algorithm
or we can ’simulate’ the algorithm once to determine
the test scheduling and run the full algorithm later.
In either case we have the same result.

7 Future Work

Obvious extensions include determination of a poly-
gons k-Moldability /k-Castability in dimensions 2 and
3. Of particular interest is the determination of 2-
Moldability in 3 dimensions. Alternatively, variations
on the moldability/castability theme which allow ro-
tation as well as transformation should be investi-
gated.

References

[1] B. Chazelle and D.P. Dobkin. Intersection of con-
vex objects in two and three dimensions. Jour-
nal of the Association for Compuling Machinery,
34:1-27, 1987.

[2] J. Hershberger and S. Suri. Offline maintenance
of planar configurations. In SODA 91, 1991.

[3] C.C. Lee and D.T. Lee. On a circle cover min-
imization problem. Information Processing Let-
ters, 18:109-115, 1984.

[4] Franco P. Preparata and
Michael Ian Shamos. Computational Geomelry
an Introduction. Springer-Verlag, 1985.

[5] Franco P. Preparata and Kenneth J. Supowit.
Testing a simple polygon for monotonicity. Infor-
mation Processing Lellers, 12(4):161-164, 1981.

[6] R. Swaminathan V. Chandru, V.T. Rajan. Mono-
tone pieces of chains. In Proceedings of The Sec-
ond Canadian Conference on Computational Ge-
omeltry, 1990.

327

