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Abstract

This paper presents a numerically robust incremental algorithm for constructing three-
dimensional Voronoi diagram. In the algorithm the higher priority is placed on the consistency
of the topological structure than on numerical values, so that, no matter how large numerical
errors may take place, the algorithm will never come across topological inconsistency and
thus can always complete its task. The output is in general an approximation of the Voronoi
diagram, but it converges to the true diagram as the precision in computation becomes higher.

The algorithm was implemented into a computer program. Our program can construct
three-dimensional Voronoi diagram even in highly degenerate cases which are numerically
unstable for conventional algorithms.

1 Introduction

Many efficient geometrical algorithms have been proposed. However, these algorithms were de-
signed on the assumption that numerical errors do not take place, and hence computer programs
based on these algorithms often fail because of inconsistency due to computational errors [1].
Here, a numerically robust algorithm for constructing three-dimensional Voronoi diagram is
proposed. In this algorithm higher priority is placed on the topological structure than on numerical
values, so that, no matter how large numerical errors may take place, the algorithm will never come

. across topological inconsistency and thus can always complete its task. For Voronoi diagram in

the plane, some algorithms on the same basic idea have been proposed [2, 3]. However, in the
case of three-dimensional Voronoi diagram, some new ideas are necessary because the topological
structure is much more complicated.

Our experimental computer program based on this algorithm can construct three-dimensional
Voronoi diagrams stably even in numerically ill-conditioned cases.



2 Three-Dimensional Voronoi Diagram and the Incremental

Construction

For two points p and g, let d(p, q) denote the Euclidean distance between p and q. For a finite set
P = {p1,p2,---,Pa} of points in the three-dimensional space, region V(p;) is defined by

V(p:) = {p | d(p,pi) < d(p,p;) for any j(# i)}

and called Voronoi region of p;. A Voronoi region is a polyhedron, and its vertices, edges,

and faces are called Voronoi points, Voronoi edges, Voronoi faces, respectively. Voronoi regions .

V(p1),V(p2),-+-,V(pa) make a partition of the space, and this partition is called the Voronoi
diagram for P. An element of P is called a generator of the Voronoi diagram.

Among many algorithms for the construction of two-dimensional Voronoi diagrams, a rather
sophisticated implementation of the incremental-type algorithm is most practical [4]. It runs, on
the average, in O(n) time for n generators. The incremental-type algorithm starts with a simple
Voronoi diagram for several generators, and modifies it step by step by adding new generators one
by one. :

However, the incremental-type algorithm as well as other algorithms is unstable because of
computational errors when degeneracy takes place or when the situation is very close to degeneracy.
Here we re-design the incremental-type algorithm so as to make it work well in finite-precision
environment.

3 Design of a Robust Algorithm

We assume that errors take place in numerical computation, so that no judgement based on nu-
merical computation is absolutely reliable. In this circumstance we can rely only on combinatorial
computations, and hence let us concentrate on combinatorial and/or topological properties. The
three-dimensional Voronoi diagram has the following topological properties.

P1 A Voronoi diagram partitions the space into as many regions as the generators.
P2 A Voronoi region is simply connected.
P3 Two Voronoi regions do not share two or more faces as a common part of their boundaries.

Since numerical errors are inevitable, we cannot construct the Voronoi diagram correctly. What we
can do is to try to construct a three-dimensional diagram which shares the topological properties
P1 ~ P3. For this purpose the basic structure of the algorithm is designed only in terms of combi-
natorial computation, and numerical results are used as lower-priority information for selecting a
more probable structure of the diagram from among all the possible. The algorithm thus designed
does not come across any topological inconsistency. It always carries out its task and gives some
output.

Let Vi, denote the Voronoi diagram for py, p,- - -, pi~;. From a topological point of view, we
redesign the procedure for changing V;_, to V; on addition of a new generator p;. This task is done
by the next procedure.

Procedure A

1. Select a subset, say T, of the vertex set of Vi_, (see Figure 1(a); the solid circle in this figure
represents a Voronoi point belonging to T).

2. For every edge connecting a vertex in T with a vertex not in T, generate a new vertex on it
(see (b); hollow circles represent newly generated vertices).

3. For every region on which new vertices are generated in Step 2, connect new vertices by new
edges to form a cycle on the boundary of the region, and generate a new face bounded by
this cycle (see (c)).

4. Remove the vertices in T', and the edges and faces incident to them (see (d)).
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Figure 1: Change of the topological structure on addition of a new generator

Note that Procedure A is described in purely combinatorial terms, so that this procedure is
not affected by numerical errors. However, there is ambiguity in the choice of T in Step 1. Next,
we consider what conditions should be satisfied by T in order for Procedure A to be the correct
procedure for constructing the Voronoi diagram. T should satisfy at least the following conditions,
where T represents the set of Voronoi points that do not belong to T.

C1 T is nonempty.

C2 The subgraph of V;_; that consists of the vertices in T and the edges connecting two vertices
in T is connected.

C3 At least one vertex on each Voronoi region belongs to 7.

C4 Let T(p;) denote the subset of T that are on Voronoi region V(pi). Foranyi=1,2,.--,1 -1,
the subgraph of Vi_; that consists of the vertices in T(p;) and the edges connecting two
vertices in T(p;) is connected.

C5 Let T(p;) denote the subset of T that are on Voronoi region V(p;). Forany i =1,2,---,1 -1,
the subgraph of Vi_; that consists of the vertices in T(p;) and the edges connecting two
vertices in T'(p;) is connected.

In Step 1 of Procedure A, the subset T should be chosen in such a way that the conditions C1
~ Cb are satisfied. Note that all of C1 ~ C5 are combinatorial conditions, and hence we can check
them without worrying about numerical errors.

However, the subset T satisfying C1 ~ C5 is not unique. To resolve this ambiguity we need
to employ numerical computation. Let q be the Voronoi point shared by the boundaries of four
Voronoi regions V(pa), V(pg), V(p,), V(ps), and let S be the sphere passing through pa, pg, p,, ps.



Let us call S the sphere associated with g. From the definition of the Voronoi diagram, q is the
center of S, and hence ¢ should be removed on the addition of the new generator p; (i.e., ¢ should
belong to T) if and only if p; is inside S. Keeping this in mind, we create the vertex set T in the
following way.

Procedure B

1. Among the old generators p;,ps,:-,pi-1, find the one, say p,, that is nearest to the new
generator p;.

2. From the vertices on the boundary of V(p,), select the one whose associated sphere is most
likely (according to numerical computation) to include p;, and initialize T as the set consisting
of this vertex.

3. Augment T by adding the vertices whose associated spheres contain p; and whose addition to
T does not violate C2 ~ C5, until T cannot be augmented any more.

Thus, our algorithm is basically Procedure A, in which Procedure B is called in order to
construct the set T of vertices to be deleted. -

4 Computational Experiments

The proposed algorithm was implemented into a computer program, and many computational
experiments were done. Sun4/370 with UNIX operating system was used, and all the floating-
point computations were carried out in single precision.

Figure 2(a) shows the output of the program for fifty generators placed at random in the unit
cube {(z,,2) | 0 < z,y,z < 1}. This output can be considered as a correct Voronoi diagram in
the sense that we visually find no difference between the output and the correct Voronoi diagram.
(b) shows one Voronoi region near the central portion of the unit cube. The output is represented
in such a way that the three-demensional structure can be perceived when the output on the right
side is seen by the left eye, and the left side by the right eye.

Figure 3 shows the time required for the computation for various numbers of generators up
to 1000. This graph shows the program runs in O(n) average time for n generators. Therefore,
topological check in the algorithm does not increase the average time complexity.

Figure 4(a) shows the output of the program for one hundred generators placed at random on
the sphere inscribed in the unit cube {(z,y,2) | 0 < z,y, 2 < 1}. (b) represents the central portion
of the same output magnified by 10°. (a) seems to be a correct Voronoi diagram, but, as (b) shows,
the central portion of the diagram is far from the correct Voronoi diagram. This set of generators
gives a highly degenerate case, and the existence of such crisscross structures at the central portion
seems natural as the output obtained in single precision. It should be noted that even for such a
degenerate set of generators the program carried out its task and gave the output.

5 Concluding Remarks

We have proposed a numerically robust incremental algorithm for constructing the three-dimensional
Voronoi diagram. In the algorithm the higher priority is placed on the consistency of the topologi-
cal structure than on numerical values, and hence it always gives a topologically consistent output.
Furthermore, the output “converges” to the true Voronoi diagram as the precision in computation
becomes higher.

The algorithm was implemented into a computer program, and numerical robustness of the
algorithm has been proved by computer experiments.

This work is partly supported by the Hori Information Science Promotion Foundation.
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Figure 2: Output of the program for fifty generators placed at random in the unit cube: (a) output;
(b) an example of a Voronoi region near the central portion.
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Figure 4: Output of the program for one hundred generators placed at random on the sphere
inscribed in the unit cube: (a)output; (b)central portion magnified by 10°)
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