340

Improving Worst-Case Optimal
Delaunay Triangulation Algorithms

Geoff Leach
Department of Computer Science
Royal Melbourne Institute of Technology
Melbourne, Australia.
gl@cs.rmit.oz.au

June 15, 1992

Abstract

We present results of an empirical investigation into
the performance of two O(nlogn) worst-case opti-
mal Delaunay triangulation algorithms: a divide-and-
conquer algorithm and a plane-sweep algorithm. We
present improvements which give a factor of 4-5 speed-
up to the divide-and-conquer algorithm and a fac-
tor of 13-16 speed-up to the plane-sweep algorithm.
Experiments using our improved implementations of
both algorithms show the plane-sweep algorithm to
be slightly faster (about 20%) than the divide-and-
conquer algorithm across a range of distributions. Us-
ing our fastest implementation of the plane-sweep al-
gorithm a set of points can be triangulated in 7-8 times
the time it takes to (merge) sort them.

1 Introduction

The Voronoi diagram of a set S = {p;,p,,..., Pn}
of points in the plane, called sites, is a partxtxon-
ing of the plane into n convex regions, one per site.
Each Voronoi region V; contains all points in the plane
closer to p; than to any other site. The straight line
dual of the Voronoi diagram, obtained by adding a
line segment between each pair of sites of S whose
Voronoi regions share an edge, is called the Delaunay
triangulation. Given the Voronoi diagram of a set of
sites, V(S), the Delaunay triangulation of those sites,
D(S), can be obtained in O(n) time — and vice versa.
An example Voronoi diagram and Delaunay triangu-
lation are shown in Figure 1.

The Voronoi diagram and Delaunay triangulation
are amongst the most useful data structures of com-
putational geometry [4, 11].
considerable interest in their efficient computation.
Shamos proved Q(nlogn) time and Q(n) space are re-

Accordingly, there is

Figure 1: Voronoi diagram (dashed) and Delaunay
triangulation (solid).

quired for their computation in the worst-case [13]
and with Hoey gave a divide-and-conquer algorithm
with matching upper bounds [14]. Their approach
was improved by Lee and Schachter who simplified
the merge step by constructing the Delaunay triangu-
lation, rather than the Voronoi diagram [10]. Guibas
and Stolfi further refine this approach, presenting a
comprehensive description of their algorithm in one
page [7). The first O(nlogn) time and O(n) space
plane-sweep algorithm is by Fortune [5]. He presents
a geometric transformation to overcome a difficulty
with adopting the plane sweep paradigm for construc-
tion of Voronoi diagrams — that a Voronoi region may
be encountered by the sweepline long before the site
itself. A plane-sweep algorithm based on a different
geometric transformation is presented in [2].

In this paper we discuss improvements which give
about a 4-5 fold speed-up to the Guibas-Stolfi algo-
rithm and improvements which give about a 14-16
fold speed-up to to the Fortune algorithm — based
on the relative speeds of our fastest and slowest (first)
implementations of both algorithms.

2 The Guibas-Stolfi Algorithm

The Guibas-Stolfi algorithm conforms to the standard
divide-and-conquer paradigm of solving a problem by
recursively breaking it into smaller subproblems and
then merging the results of the subproblems to solve
the original problem. First the points are sorted lexi-
graphically (by z-coordinate, with ties resolved by y-
coordinate). The sorted sites are then partitioned into
two halves, a left half L and a right half R, and the
Delaunay triangulation of each half recursively com-
puted. The triangulation is completed by merging the
triangulation of L, D(L), and the triangulation of R,
D(R). The recursion terminates at either two or three
sites, in which case either an edge or a triangle is cre-
ated.

The merge step is the most complicated and expen-
sive part of the algorithm. It can be thought of as
a bottom-to-top “stitching” operation, in which some
existing edges of D(L) and D(R) are removed and new
L-R cross edges are added, as shown in Figure 2. The

Figure 2: Merging two triangulations. In (a) D(L)
and D(R) are shown. Edges which are deleted in the
merge are shown dashed. In (b) the merged triangu-
lation is shown. New cross edges are shown solid and
existing triangulation edges are shown dashed.

cross edges are determined in vertical order, starting
with the lower convex hull edge which is determined
in an initialisation step. From then on successive cross
edges are found by a three step process: (1) find the
best site in L for a cross edge connected to the origin
of the topmost cross edge (cross edges are regarded as
oriented from R to L), (2) find the best site in R for
a cross edge connected to the destination of the top-
most cross edge and (3) choose the best site between
the two chosen in (1) and (2) and add the next cross
edge. The process finishes when the upper convex hull
edge has been added.

The best candidate site from L is found by evaluat-
ing, in counter-clockwise (ccw) order, the suitability
of the sites in D(L) adjacent to the L-vertex of the
topmost cross edge. Initially the first ccw site is as-
sumed to be the best site. The next ccw site is a
better site if it lies inside the circumcircle of the first

13

341

ccw site and the endpoints of the topmost cross edge,
as shown in Figure 3. If D is a better candidate than

c

Figure 3: InCircle test for better candidates. A and
B are the endpoints of the topmost cross edge, C is
the first ccw site and D the next ccw site.

C edge BC is deleted, C is updated to refer to D and
D is updated to refer to the next ccw adjacent site.
The iteration stops as soon as a site D lies outside of
the circumcircle of A, B and C, or when the site D
becomes invalid, that is, lies to the left (below) the
edge AB.

The choice between the best candidate site from
L and and the best candidate site from R — found
symmetrically to the best candidate site from L — is
made as follows: if either site is invalid then the other
site is chosen, otherwise the InCircle test is applied
and the site with the smallest circumcircle is chosen.
The merge loop terminates when there are no valid
sites in either D(L) or D(R).

3 Improvements: Guibas-Stolfi

Our implementation of the Guibas-Stolfi algorithm
began as the detailed description given in [7] and went
through eighteen versions as we investigated various
improvements. Our efforts were directed by timing
tests using up to a million points sampled randomly
from the unit square and detailed statistics provided
by the UNIX profiler gprof. We stopped when our im-
provements were making little or negative difference
to the speed of the algorithm and when we felt we had
exhausted the main potential areas. In this section we
present the most signficant improvements.

In our first version the break-up of time according
to gprof is: 55% in various quad-edge (see below) navi-
gation and manipulation routines, 16% calculating the
InCircle predicate, 12% calculating the Valid pred-
icate and the remaining 17% spread across a number
of activities — including 2% sorting the sites. We
present our improvements in that order (rather than
the “order” in which they were implemented).

The Guibas-Stolfi algorithm uses the quad-edge
data structure [7] to represent the Delaunay trian-
gulation. We replace it with the winged-edge struc-

342

ture [1]. Both structures are edge based representa-
tions of graphs but the quad-edge structure has some
extra features, particularly the ability to switch easily
from the primal graph to the dual graph, which al-
though elegant require more complicated addressing.

Our second improvement is to the InCircle test.
Guibas and Stolfi give the following definition for this
fundamental predicate of the merge step (4, B, C and
D are sites):

Ta ya i+ 1
D(4,B,C,D)=| %8 ¥8 2pt¥p 1|
T T ze ye g4y 1 ’
zp yp zHh+yp 1

The predicate returns true if site D lies inside the cir-
cumcircle of sites A, B and C. Expansion of the deter-
minant gives an expression which, assuming common
sub-expression elimination, requires 45 (arithmetic)
operations. .

We instead use a test based on y-coordinates of cir-
cumcircle centres. As shown in Figure 4, for two fixed
sites A and B the centre of the circumcircle of A, B
and a third point lies on the bisector of A and B. As

Figure 4: Circumcircle centre test.

the merge step of the algorithm always seeks the best
candidate site above the topmost cross edge, a site D
is a better site than a site C if its circumcircle centre
lies lower on the bisector. The best candidate site is
the one whose circumcircle centre is the lowest.
Substituting (z4,ya4), (2B, ys), and (z¢, yc) into

(z-p2+(@—-q)?=r

and solving for ¢ gives

= EA+yiNec—zp)~(zh+yh)(Fc=2a)+(z2 +y2) (zB=T)
7= 2((zp=za)yc-va)=(zc=za)(yB~YA)) :
This calculation requires 23 operations (ignoring the
division by 2 and assuming common subexpression
elimination). Two such calculations are needed to
compare the first two candidate sites; thereafter only

one is needed per candidate site, for which the cost of
the InCircle test is reduced by approximately half.

The cost is further reduced by caching. The top-
most cross edge remains fixed for one iteration of the
merge loop. Identifying sites A and B as its endpoints,
the quantities 25—z 4, yp —ya, 23 +y3 and 23 + vp
from the above expression for ¢ are constant for one
iteration of the loop. By precalculating them the cost
of InCircle is reduced to 15 operations.

Another saving made possible by reformulating the
InCircle test as a comparison of circumcircle centre
y-coordinates is to the final InCircle test to decide
between the best candidate from L and the best can-
didate from R. This test can be reduced to a simple
comparison of two circumcircle y-coordinates, both of
which have already been calculated and stored.

Our third improvement involves the Valid test.
This test determines whether a point lies to the right
of a line defined by two points and it’s definition is
given as

Za ya 1
DA,B,C)=|zp ys 1 |>0.
zc yc 1

Expanding the determinant and rearranging gives

D(A,B,C) = (zp—z4)(yc—ya)—(zc—z4)(y8—ya)

which is just the cross product of two vectors formed
from three points. The cost of the test, assuming
caching of zp — z4 and yp — y, is 5 operations. We
use the test as given, but use it in two ways to reduce
the cost of the InCircle test. The first is to use the
quantity calculated in the Valid test as the denomi-
nator in the circumcircle y-coordinate calculation —
notice the two expressions are the same. The cost of
the InCircle test is then 10 operations. The second
is as a short-circuit. Restructuring the loops which
find the best candidates to always test for validity of
a site before performing an InCircle test meets the
need to detect and exclude invalid sites (handled au-
tomatically by the original test) with a cheaper test
than InCircle.

Our fourth improvement, which occured through-
out development, is to code the winged-edge navi-
gation and manipulation routines, and the InCircle
and Valid tests as macros to save on function calls.
For the same reason we eliminated recursion from our
fastest implementation, but, to our surprise, found it
to be no quicker — and less clear.

Taken together the improvements increase the
speed of the algorithm by a factor of about 4-5. We
discuss the impact of the improvements on space and
the issue of robustness in section 6.

4 The Fortune Algorithm

The Fortune algorithm combines the plane-sweep
paradigm [4, 11] with a geometric transformation.
The transformation overcomes the difficulty for plane-
sweep approaches that a Voronoi region may start be-
fore the corresponding site is encountered or, in the
case of the Delaunay triangulation, that a site may
invalidate many Delaunay triangles formed so far.
The transformation adds the distance to the closest
member of S to a point’s y-coordinate. Some of its
effects are as follows. A site p is mapped to itself, as
the closest member of S is p and the distance from
p to p is zero. A bisector By, between sites p and g,
with p, > ¢y, is mapped into a hyperbola B, that
has it’s lowest point at p and which has two arms,
or boundaries, that extend upwards, or into a verti-
cal line if Bp, is vertical, as shown in Figure 5. A

Figure 5: Transformed bisectors

Voronoi edge is mapped to a hyperbola segment and
a Voronoi vertex is mapped to an intersection of three
(or more) hyperbolae. A complete Voronoi diagram
and its image under the transformation together with
an example sweepline are shown in Figure 6.

Figure 6: (a) Original Voronoi Diagram. (b) Trans-
formed Voronoi diagram with sweepline (S).

The plane-sweep technique has two characteristic
data structures: the sweep line status L and the event
queue Q. The exact content and requirements of these

data structures depends on the application. In this-

case L maintains the horizontal order (for a vertical
sweep) of the boundaries of V(S)* intersected by the
horizontal sweep line, as shown in Figure 6, and the
event queue Q stores two types of events: site events
and intersection events.

343

The actions required for a site event are to insert
into L the boundaries of the associated transformed
Voronoi region and to update Q by deleting intersec-
tion events between boundaries which are no longer
neighbours and inserting intersection events between
boundaries which have just become neighbours. The
actions required for an intersection event, which marks
the top of the circumcircle of three sites, are to replace
the intersecting boundaries in L with one new bound-
ary, to update Q as for a site event and to mark the
bisectors corresponding to the intersecting boundaries
with the Voronoi vertex corresponding to the untrans-
formed intersection point, or, if the Delaunay triangu-
lation is sought, to output a Delaunay triangle.

The sweep line status must thus support insert, find,
delete, successor and predecessor operations — the
operations of an (augmented) dictionary. The event
point queue must must support delete-min, insert and
delete operations — the operations of a priorily-queue.

5 Improvements: Fortune

The Fortune algorithm is presented at a higher level
than the Guibas-Stolfi algorithm. Details of the data
structures are left largely in the implementors’ hands.
After getting our first O(nlogn) version working we
proceeded as for the Guibas-Stolfi algorithm. In this
section we discuss the most significant improvements.

In our first version L is implemented as a red-black
tree [6], augmented with successor and predecessor
pointers for O(1) neighbour access and Q is imple-
mented as an indirect implicit heap [12]. According to
gprof 83% of the total time is spent in tree operations
and 9% in heap operations. Tree searches, including
those performed as part of.insertions and deletions,
account for 78% of total time. This includes 25% of
total time for square root calculations.

Our improvements to tree operations fall into two
categories: improvements to reduce their number and
improvements to reduce their cost. There are three
improvements to reduce their number. The first is to
insert a pair of boundaries with only one tree search.
The second is to delete only one of the two bound-
aries involved in an intersection event whilst reusing
the other with updated information (constituting a
change operation). The third is perform deletions
without a tree search by storing a back-pointer with
intersection events. These changes reduce the number
of tree searches by about four-fifths. To allow tree
rebalancing these changes require bottom-up, rather
than top-down, red-black tree insertion and parent
pointers. }

Before discussing improvements which reduce the

344

cost of tree searches we elaborate on the calculations
involved. The boundaries stored in L are ordered
along the z-axis. They divide the horizontal sweep
line into segments as shown in Figure 6. The seg-
ments’ endpoints vary with y but their order remains
the same between any two events. A (binary) tree
search, in which site-boundary comparisons are per-
formed, is used to determine the segment whose z-
coordinates contain s, the z-coordinate of a site s
(the only tree searches performed are for insertions
associated with site events). The most direct way to
perform to perform a site-boundary comparison is to
compute the z-coordinate of a boundary given sy, the
y coordinate of a site. The equation of a transformed
bisector is

By ={(=9") :v" =y+((y— py)?* + (z - p=)*)"/?}

where a point on the bisector'has the distance from it
to the site p added to it’s y-coordinate. Eliminating y
by using the equation y = mz+c of the untransformed
bisector, substituting sy for y* and rearranging gives a
quadratic equation for the z-coordinate of the bound-
ary at sy, which can solved and the result compared
with sz. This is how we first performed site-boundary
comparisons.

Our first improvement to reduce the cost of site-
boundary comparisons is to eliminate the square root
operation required to solve the quadratic equation.
Rearrangement of the equation of a transformed bi-
sector gives

(sy = (mz +¢))* = (mz +¢) - py)* + (z - ps)°.

If we replace z by s, we have an expression on the
left which ean be compared with the expression on the
right to see if s, lies below, above or on the boundary,
and hence whether, assuming a negative boundary,
the site lies to the left, to the right or on the boundary.
The test amounts to a comparison of two (squared)
distances: the vertical distance from the site to the
untransformed bisector By, and the distance from the
point on By, at s; to p by which the untranformed
bisector is transformed. If m and c are calculated and
stored with each boundary the cost of the test is 9
operations.

Our second improvement to reduce the cost of tree
searches is to use short-circuit tests. We give two. The
first is that a site s lies to the left of the right boundary
G, (where py > q,) if s, < p, and to the right of the
left boundary Cpqif 5z > po. This short-circuits about
half of the site-boundary calculations. The second is
that a site s lies to the left of the boundary Cpy if
8z < iz, where i is the z-coordinate of the boundary’s
intersection point with either of it’s neighbours, and

vice-versa for C,. With both of these short-circuits
in place we find that the more expensive test is needed
in only about 10% of cases.

With the above improvements to the tree- opera-
tions, the main event queue operations take about
43% of the total time, compared with about 9% in
our first implementation. We give two improvements
to event queue operations. The first is to separate the
event queue into a site event queue and an intersec-
tion event queue and to use different representations
and algorithms. The sites form a static set of events,
all of which are known at the outset and all of which
must be processed. The site event queue is built by
simply sorting the sites. The intersection events, how-
ever, form a dynamic set of events, discovered on the
fly, and need to be stored in a priority queue. By stor-
ing only intersection events in the priority queue its
size is reduced and operations are speeded. The next
event is determined by comparing the minimum event
of both queues. Separating the queues also allows the
sites to be stored in single (or double) precision whilst
storing intersection points in double precision — we
found intersection points had to be stored in double
precision to improve robustness to an acceptable level.

The second improvement to event queue operations
is to store only one intersection event, the lowest, per
boundary. As presented in [5], the algorithm finds
and stores two intersection events per boundary, one
for each neighbouring boundary. However only the
lowest is ever processed — the other is always deleted.

Our final improvement is to recode some small func-
tions as macros, which we did throughout the inves-
tigation, although we did not make a special effort to
reduce function calls to a minimum, preferring to ad-
here to a programming style we are comfortable with.

Overall, the improvements gave a speed-up factor
of about 13-16. We discuss the impact of the im-
provements on space and the issue of robustness in
section 6.

6 Experiment Results

In Table 1 we give results of our timing experiments
for points sampled from the unit square. These re-
sults are from a lightly loaded Sun Sparcstation 2 with
64Mbytes of main memory. The programs are written
in C. Gaps in the table represent experiments where
our slowest implementations failed. Using the largest
experiments for which we have results the speed-up
factors are 4.9 for the Guibas-Stolfi algorithm and 16.3
for the Fortune algorithm. In part, the difference in
speed-up is because we started with a less polished
implementation of the Fortune algorithm. The fastest

GS F

s f s f
210 0 o 2] o0
21T 1] 0| 6] 0
212 4| 0] 12 1
213 9 2 271 2
2120 4| 57| 5
215144 9120 9
218 20 | 277 | 17 |
20717204 | 42 38
2IE ™ 91 76
218 195 164
270 410 333

Table 1: Experiment results for our slowest (s) and
fastest (f) implementation of the Guibas-Stolfi (GS)
algorithm and the Fortune (F) algorithm.

implementation of the Fortune algorithm is about 25%
faster than the fastest implementation of the Guibas-
Stolfi algorithm. :

We also ran experiments using a number of other
distributions, summarised in the following table.
Distributions B and C are intended to approxi-

Key | Distribution

A uniform within unit square

B A with a z scale factor of 100

C A with a y scale factor of 100

D normal(0, 1)*

E clustered normal: five normal(p, 1)%, peA

Table 2: Distributions

mate the best-case and worst-case for the divide-and-
conquer algorithm and the worst-case and best-case
for the plane-sweep algorithm.

In Table 3 we give results for the above distribu-
tions. In each case we give the times for the largest
experiment for which the slowest implementation suc-
ceeded. The results indicate that the improvements
we made on the basis of results obtained from distri-
bution A extended to the other distributions.

In Table 4 we give results for experiments of 22° sites
using our fastest implementations of both algorithms.
Results for distributions B and C are swapped around
for the Fortune algorithm so that the fastest result
for the Guibas-Stolfi algorithm is compared with the
fastest result for the Fortune algorithm, and likewise
for the slowest results. On average the plane-sweep

345

GS F
n s| f|s/f| n s| f]s/f
2171204 | 42482277117 [16
211 57|13 [44 28] 32 2] 16
2111228 [4.0[2224 16 | 14
20| 451045277494 [39| 12
2°1 95119]5.0[2227 [17 | 13

= O] O & 3>

Table 3: Ratios of slowest (s) to fastest (f) times.

GS F | GS/F
A410(333] 1.2
B|288[29 | 1.0
C|535[376| 14
D|412]329| 13
E 398320 1.2

Table 4: Ratios of fastest implementations.

algorithm is faster by a factor of 1.2. Experiments
on a Silicon Graphics Personal Iris (4D/20) gave sim-
ilar results — to within a nearly constant scale factor.
This is a small difference, particularly in view of the
speed-up factors of 4-5 and 13-16.

We turn now to space requirements. Both algo-
rithms store the n sites. In addition the Guibas-Stolfi
algorithm stores the planar graph, which has at most
3n — 6 edges. There are 24 bytes/edge in our rep-
resentation and we maintain an edge free list at 4
bytes/edge. So just under 84n bytes is required to
store the edges. The plane-sweep algorithm stores
the sweep line status and the event queue. In the
worst-case for the plane-sweep algorithm there could
be 2(n — 1) boundaries and n — 2 intersection events
present at the one time (Figure 7). There are 80

AL

Figure 7: Worst-case for plane-sweep algorithm.

bytes/boundary and 32 bytes/event in our represen-
tation. We also maintain three free lists (intersection
events, boundaries and tree nodes) at 4 bytes/item.
Together, these structures require just under 212n
bytes in the worst-case. However, the average case re-

346

quirements are considerably less. We use an estimate
of an'72 for the number of boundaries and intersection
events, where a is a scale factor, which had a maxi-
mum value of 10 in our experiments and thus for 22°
sites about 1.5 Mbytes, in addition to the 8 Mbytes
for the sites, was required.

As to ease of implementation our subjective assess-
ment is that the Guibas-Stolfi algorithm is slightly
easier to implement. Our fastest implementation of
the Guibas-Stolfi algorithm is 1087 lines of code and
our fastest implementation of the Fortune algorithm is
2490 lines of code.. Numerical robustness is a common
problem. Fortuitously, the improvements discussed in
Sections 3 and 5, increased robustness as well as speed
(although our most robust (fastest) versions still occa-
sionally fail). The impact of the improvements on nu-

merical robustness needs further investigation (see [9] .

for discussion of a rational arithmetic implementation
of the Guibas-Stolfi algorithm and references to other
results relating to robustness and correctness of geo-
metric algorithms).

7 Future Work

In investigations of this sort there is always possibil-
ity of further improvements. We suggest one: replace-
ment of the implicit heap structure used for the prior-
ity queue in the plane-sweep algorithm with a newer
heap structure such as a splay-heap [8, 15).

Another area of future investigation is improvement
of the average case behaviour whilst retaining worst-
case optimality. For instance, Dwyer shows how the
a gridding technique using O(n) space can be em-
ployed to improve the average case complexity to
O(nloglogn) for a large range of distributions whilst
retaining O(nlogn) worst-case complexity [3].

References

(1] B. G. Baumgart. A Polyhedron Representation
for Computer Vision. National Computer Con-

ference. AFIPS Conference Proceedings, vol.-44,-

pp- 589-596, AFIPS Press, Arlington, Va., 1975.

[2] F. Dehne and R. Klein. A Sweepcircle Algorithm
for Voronoi Diagrams. Proceedings of Graph-
Theoretical Concepts in Computer Science, pub-
lished as Lecture Notes in Computer Science pp.
59-69, Springer-Verlag, 1987.

[3] R. A. Dwyer. A Faster Divide-and-Conquer Algo-
rithm for Constructing Delaunay Triangulations.
Algorithmica, 2:137-151, 1987.

[4] H. Edelsbrunner. Algorithms in Combinatorial
Geometry. Springer-Verlag, New York, 1987.

(5] S. Fortune. A Sweepline Algorithm for Voronoi
Diagrams. Algorithmica, 2:153-174, 1987.

[6] L. Guibas and R. Sedgewick. A Dichromatic
Framework for Balanced Trees. 19th Annual
Symposium on Foundations of Computer Science.
IEEE, 1978.

[7] L. Guibas and J. Stolfi. Primitives for the Manip-
ulation of General Subdivisions and the Compu-
tation of Voronoi Diagrams. ACM Transactions
on Graphics, 4:74-123, April, 1985.

[8] D. W. Jones. An Empirical Comparison of
Priority-Queue and Event-Set Implementations.
Communications of the ACM, 29(4):300-311,
_A_Bril, 1986. '

[9] M. Karasick, D. Lieber and L. R. Nackman.
Efficient Delaunay Triangulation Using Ratio-
nal Arithmetic. ACM Transactions on Graphics,
10(1):71-91, Jan., 1990.

(10} D. T. Lee and B. Schachter. Two Algorithms
for Constructing Delaunay Triangulations. Int. J.
Comput. Inform. Sci., 9(3):219-242, 1980.

(11] F. P. Preparata and M. I. Shamos. Compu-
lational Geometry - an Introduction. Springer-
Verlag, New York, 1985.

[12] R. Sedgewick. Algorithms.
Reading, Mass., 1988.

(13] M. I. Shamos. Computational Geometry. Ph.D.
Dissertation, Yale University, New Haven, Conn.,
1977.

(14] M. 1. Shamos and D. Hoey. Closest-point prob-
lems. Proc. 16th IEEE Symposium on Founda-
tions of Computer Science, pp. 151-162, 1977.

(15] D. D. Sleator and R. E. Tarjan. Self-adjusting
heaps. SIAM. Journal on Computing, 15(1): pp.
52-69, Feb., 1986.

Addison-Wesley,

