Computing the Voronoi Diagram on the Star and

Pancake Interconnection Networks

v S.G. Akl, K. Qiu I. Stojmenovié
Dept. of Computing & Info. Sci. Computer Science Department
: Queen’s University University of Ottawa
Kingston, Canada Ottawa, Canada
{akl,qiu}@qucis.queensu.ca stosl@Quottawa.bitnet
Abstract

The star and pancake interconnection networks are two attractive aliernatives to the popular hypercube
Jor interconnecting processors in a parallel computer. They possess many desirable properties such as
small degree and diameter. In this paper, we present parallel algorithms that compute the Voronoi
diagram on the star and pancake networks. For an n-star or n-pancake with p = n! processors, given
n! planar points stored in the processors such that each processor holds one point and has a memory of
constant size, the Voronoi diagram of these points can be found in O(n'log? n) time. The algorithm
presented in this paper is universal in the sense that it can be used on any network that can efficiently
implement the divide-and-conquer paradigm.

1 Introduction

Given a set of generators for a finite group G, the Cayley graph with respect to G is defined as follows.
The vertices of the graph correspond to the elements of the group G, and there is an edge (a,b) for
a,b € G if and only if there is a generator g such that ag = b [1]. We require that the set of generators
be closed under inversion so that the resulting graph can be viewed as being undirected [1]. Both the
hypercube and CCC are Cayley graphs [1].

Let G be a permutation group and V;, be the set of all n! permutations of symbols 1, 2, ..., n. A siar
graph on n symbols, S, = (V4, Es,), is a Cayley graph with generators g; = i23...(i — 1)1(i + 1)...n,
2 < i < n Fig. 1shows S4. For a node v € V,, we define v[i] to be the i** symbol in v, with
v[1] being the leftmost one. Each vertex in S, is connected to n — 1 vertices which can be obtained
by interchanging the first symbol of the vertex with the i** symbol, 2 < i < n. We call these n — 1
connections dimensions. Thus each vertex is connected to n — 1 vertices through dimensions 2, 3, ...,
n. S, is also called an n-star.

A pancake interconnection network on n symbols, P, = (V,, Ep,), is a Cayley graph with generators

hi = (i ~1)..321(i + 1)({ + 2)...n, 2 < i < n. Each vertex in P, is connected to n — 1 vertices which

- can be obtained by flipping the first i symbols, 2 < i < n. The dimensions for P, are defined similarly
" as for star networks. P, is also called an n-pancake.

Fig. 2 shows P,. Note that S, and P, have the same vertex set. Clearly, h; = gi for i < 3, and
Sn = Py, for n < 3.

353

354

1234 4231
C /l
214 2134 3241 2431
2314\ 3124 B4 A0
d b
1324 4321
3412 2413
a [
4312 1432 4213]1423
‘“}J 4132 1243 j4123
. N
b d
3142 2143

Figure 1: A 4-Star S

1234 4321
b
321) 2134
2314 3124
1324
3142
4132 1342
1432 4312
¥
a
3412 2143

Figure 2: A 4-Pancake P,

In those cases where our discussion and results apply to both networks, we will use X, to denote
either S,, or P,.

Both the star and pancake interconnection networks are attractive alternatives to the hypercube
for interconnecting processors in a parallel computer, and compare favorably with it in several aspects
(1, 2]. For example, the degree of X, isn—1, i.e., sub-logarithmic in the number of vertices of X,, while
a hypercube with ©(n!) vertices has degree ©(logn!) = O(nlogn), i.e., logarithmic in the number of
vertices. Similarly, the diameter of X, is ©(n), while a hypercube with ©(n!) vertices has a diameter of
O(logn!) = ©(nlogn). Other attractive properties include their symmetry properties, as well as many
desirable fault tolerance characteristics [1, 2, 3]. Recently, interest in the study of these two networks
has grown steadily. For example, Akl, Qiu, and Stojmenovic have studied various data communication
algorithms and their applications in developing parallel algorithms for solving problems in the area of
computational geometry [4].

In this paper, we present parallel algorithms that compute the Voronoi diagram on the star and
pancake networks. A major component and contribution of our Voronoi diagram algorithms is a parallel

- batched planar point location algorithm that works for the planar subdivision induced by the Voronoi

diagram. All of our algorithms are motivated by the ones developed in [11] for the hypercube model.
For an n-star or n-pancake with p = n! processors, given n! planar points stored in the processors such
that each processor holds one point and has a memory of constant size, the problem of batched planar

point location for a planar subdivision induced by a Voronoi diagram can be solved in time O(n3 log n),
and the Voronoi diagram of these n! points can be found in O(n*log? n) time. It is important to note
that our algorithms belong to the divide-and-conquer paradigm and in that sense they can be used on
any network that implements this paradigm efficiently.

The remainder of the paper is organized as follows. In Section 2 we briefly review previous results
concerning a number of basic data communication algorithms used in our planar point location and
Voronoi diagram algorithms. We discuss the problem of planar point location for a subdivision induced
by a Voronoi diagram in Section 3. Section 4 presents Voronoi diagram algorithms for S,, as well as P,.

2 Preliminaries

Definition 1 Let X, (1) be a sub-graph of X, induced by all the vertices with the same last symbol
i, for somel <i<n.

From the definitions of S, and P,, it can be seen easily that S,_,(i) is an (n — 1)-star and that
Pn-1(f) is an (n — 1)-pancake, both defined on symbols {1,2,---,n} — {i}. It follows that X, can be
decomposed into n Xpn_1’s: Xn_1(f), 1 < i < n [1, 2). For example, S, in Fig. 1 contains four 3-stars,
namely S3(1), S3(2), S3(3), and S3(4), by ﬁxxng the last symbol at 1, 2, 3, and 4, respectively. P, can
also be decomposed similarly.

Definition 2 In X, let p denote the processor associated with the verter ajas...a, and g denote the
processor associated with the vertezr byib,...b,. An ordering, <, on the processors is defined as follows:
p < q if there erists an i, 1 < i < n, such that a;j = bj for j > i, and a; < b;. In other words, the
processors are ordered in reverse lericographic order (i.c., lericographic order if we read from right to
left). If p < q, we say that p precedes q.

Definition 3 In X,,, the rank r(u) of a vertez u is the number of vertices v such that v < u, i.e., r(u)
= |{v|lv < u,v € V,,}|. Clearly, 0 < r(u) < n!—1.

Throughout this paper, we assume that in one time unit, a processor can send (receive) at most one
datum of fixed length to (from) one and only one of its neighbors.

In what follows, we list a number of results to be used in our algorithms.

Sorting, Merging, and Unmerging: Given n! numbers in X, with each processor holding one
number, they can be sorted in time O(n3log n), with respect to the processor ordering given in Definition
2 [8, 10]. Also, given two sorted sequences stored in two groups of X,_.;’s:

A: Xn..l(i),/ n—l(i+ 1),---7 Xn—l(j)s
B: Xp_1(k), Xa—1(k + 1), ..., Xn-1(),

1< j< k<! (Aand B do not necessarily contain the same number of X,_,’s), such that A and B are
in opposite directions (meaning that one is non-decreasing and the other is non-increasing), they can be
- merged into a sorted sequence stored in C: Xy—(i), Xn-1(i + 1), ..y Xn=1(J), Xn=1(k), Xn-1(k + 1),
" wees Xn=1(1), in either direction, in O(n?) time [4]. Given sequences A, B, and C as defined above,
where each element in C knows the rank of the vertex in which it was originally before the merging, the
problem of unmerging is to permute the list such that each element in C returns to its original vertex
in A or B. This problem can also be solved in O(n?) time [4].

355

356

Compression: The problem of compression is defined as follows. Some vertices of X, contain
“active” elements. The rank r(u) of an active vertex u is the number of active vertices preceding u
(note the difference between this definition and Definition 3). These active elements are to be compressed
so that they are stored in vertices 0, 1, 2, ..., with the active element originally in vertex u now in vertex
r(u). Compression can be performed in O(n?) time on X, [4].

Interval Broadcasting: In X,,, a certain number k of vertices are marked as leaders Iy, lo,y oo, i,
with i < l; if i < j, and k < n! — 1. Each leader possesses a datum that it must share with all the
higher numbered vertices (in terms of the processor ordering in Definition 2) up to but not including
the next leader. That is, each marked vertex {; has to broadcast its message to the interval of vertices
between /; and ;4. Interval broadcasting can be done in O(n logn) time on X, [4].

3 Batched Planar Point Location

In order to locate O(N) query points in a planar subdivision defined by O(N) edges and induced by
a Voronoi diagram, we use the chain method described by Lee and Preparata (6], a parallelization of
which for mesh-connected computers is given in [7). The two algorithms are used in [11] to obtain
an algorithm for the hypercube. The latter has motivated our algorithm for the star and pancake
interconnection networks, which we now describe.

A connected planar straight line graph with a finite number of vertices subdivides the plane into
nonempty regions of which exactly one is infinite. These regions form a planar subdivision. A chain C
= (u1,u,-- -, up) is a straight line graph with vertex set {u1,u3,---,uy} and edge set {(u;, uj4,|1 < i <
p—1}. The chain is said to be monotone with respect to a straight line [if the orthogonal projections
{l(u1),1(uz2),---,1(up)} of the vertices of C on [are ordered as (I(u1), l(u2), - - -, Uup)) [6].

First we sort the regions induced by the Voronoi diagram using the z-coordinates of a number of
selected interior points (called centers). Then a monotone complete set of chains is defined as in [6, 7, 9].
These chains are nodes of a binary tree whose leaves correspond to regions of the subdivision. Each
chain has its own level and index (the rank of the chain among the chains of a given level). Chains may
share common edges. If an edge e belongs to more than one chain it belongs to all members of a set
(an interval) of consecutive chains. We assign e to the hierarchically highest chain to which it belongs.
Each edge e; is associated with two regions represented by their centers. Since the regions constitute a
Voronoi diagram for a set of points, these points are used as the centers of these regions. Because these
points are sorted by their z-coordinates, we denote them by ug, uj, ..., such that ui(z) < uj(z) if i < 5.
We can represent these centers (thus regions) by the binary representations of their ranks, so the centers
are 00...0, 00..01, 00..10, Therefore, each edge is associated with two binary numbers. The level and
index of each chain and edge are determined in constant time by the following rule as described in [7]:
Find the “bit-wise exclusive or”, say ¥, of the two binary numbers of a pair of points associated with
edge e;. The level of ¢;, call it /;, can be obtained from li = |log ¥|. The index of the chain to which e;
belongs is given by [(2's complement (2")24)JA(binary representation of e.s associated point)]/2li+1,
For example, if e; is associated with points 0010 and 0101, then ¥ = 0111 and llog 0111 = (2);, so
€; is of level 2. Furthermore, [(2's complement(2?) — 22) = 1100 - 0100 = 1000, and (1000 A 0010) (or
1000 A 0101) = 0; so e; is indexed as 0 in the chains of level 2.

All edges are now sorted by their level as the primary key, their index as the secondary key, and the
y-coordinate of one of their two end-points as the ternary key (the end-point with smaller y-coordinate

- is chosen). Also, all query points have their level, index, and y-coordinate as their primary, secondary,
~ and ternary keys. Initially, all query points are assigned a level of [log N] (the highest possible) and an

index of 0, and all query points are sorted by their y-coordinates. Following [6], we call a discrimination
(of point Z against edge) the operation of deciding on which side of e the point Z lies. Then, for each
level i, from i = [log N to i = 0 the following steps are performed:

1. Merge the set of edges with the set of query points, using current indices of query points; note
that all query points have the same level, equal to i;

2. Perform interval broadcasting to find, for each query point Z, the corresponding edge e against
which Z should be discriminated. If the y-coordinate of Z is not between the y-coordinates of
the end-points of e, then Z has been discriminated at the previous level. Depending on which
side of e Z is , Z calculates the index of the chain against which it should be discriminated at
the next level (we refer to this as the new index of the given query point). If Z is to the left of
the corresponding edge, we call it a left query point, otherwise, we call it a right query point. If
the current index of Z is k, then the new index is either 2k or 2k + 1, for the left and right query
points, respectively;

3. Unmerge edges and query points;

4. Re-sort query points by their new indices, by compressing left query points and right query points
separately, and by merging left and right query points by their new indices;

5. Assign the next level to all query points.

All query points will be located in Step 2 when ¢ = 0.

In X,, the height of the binary tree of chains is y_;_,[log], which is ©(nlogn). Thus the number
of levels is also ©(nlogn). Since all the steps can be done in O(n?) time, the time complexity of the
X, algorithm is therefore O((nlogn)n?) = O(n3logn).

4 Voronoi Diagram Algorithms on X,

An O(n*log® n) time algorithm to' construct the Voronoi diagram of a set of n! points on X, with n!
processors and constant memory per processor can be obtained by combining the algorithm described
in [5] (which solves the problem on a mesh-connected computer), the planar point location technique
described in Section 3, and the data communication algorithms described in Section 2.

Given a set T of N = n! planar points for which we want to find the Voronoi diagram V(T'), we first
sort these N points by their z-coordinates. Let the set of points in X,_;(i) be T;, 1 < i < n. First,
Xn-1(?) finds the Voronoi diagram V(T;) for the points in T;, recursively, and in parallel for 1 < i < n.
Then these n V(T;)’s are merged [log n] times to form V(T). The algorithm is given by the following
procedure.

Procedure VD(X,,)

e Sort n! points by their z-coordinates;

¢ do in parallel for 1 <i < n: VD (X,_4(i))
e for j =1 to [logn] do

1. Starting with 1, arrange all (X,-1(i)’s) into groups of 27 consecutively numbered X, _,’s
(The last group may not have 2/ X,,_,’).

2. for all the groups do in parallel: merge two Voronoi Diagrams within the group. O

~ For example, when n = 7, and j = 1, we have four groups

Groupl: Xg(1) Xes(2)
Group2: Xg(3) Xe(4)
Group3: Xg(5) Xe(6)
Groupd: Xe(7)

357

358

Let L and R be two sets of points such that L N\ R = 0, all points in L and R are sorted by their
z-coordinates, and for any u € L, v € R, u(z) < v(z). Suppose we have found V(L) and V(R),
respectively. V(L) and V(R) are merged using the algorithm of Jeong and Lee [5], except that we use
our batched planar point location algorithm described in Section 3. Note that when doing the batched
planar point location, for query points in R (L) in regions of V(L) (V(R)), the points of L (R) are
chosen to be centers for regions of V(L) (V(R)).

It should be noted here that in sequential computation, the Voronoi diagram of N points can be
computed optimally in O(N log N) time [9]. This directly leads to a lower bound of Q(nlogn) on the
running time of any parallel algorithm that computes the Voronoi diagram of N = n! points using
n! processors. Whether this lower bound can be matched by an algorithm for computing the Voronoi
diagram on X, is an open question.

References

[1] S.B. Akers and -B. Krishnamurthy, “A Group Theoretic Model for Symmetric Interconnection
Networks,” JEEE Transaction on Compulers, Vol. c-38, No. 4, April 1989, pp. 555-566.

[2] S.B. Akers, D. Harel, and B. Krishnamurthy, “The Star Graph: An Attractive Alternative to the
n-cube,” Proc. International Conference on Parallel Processing, St. Charles, Illinois, August 1987,
pp. 393-400.

[3] S.B. Akers and B. Krishnamurthy, “The Fault Tolerance of Star Graphs,” Ed. L.P. Kartashev
and S.I. Kartashev, 2"¢ International Conference on Supercomputing, Vol. III, San Francisco, May
1987, pp. 270-276.

[4] S.G. Akl, K. Qiu, and I. Stojmenovié, “Data Communication and Computational Geometry on
the Star and Pancake Interconnection Networks,” Proc. 3" IEEE Symposium on Parallel and
Distributed Processing, Dallas, Dec. 1991, pp. 415-422.

[5] C.S. Jeong and D.T. Lee, “Parallel Geometric Algorithms on Mesh-Connected Computers,” Algo-
rithmica, Vol. 5, No. 2, 1990, pp. 155-177.

(6] D.T. Lee and F.P. Preparata, “Location of Point in a Planar Subdivision and Its Applications,”
SIAM J. Compu., Vol. 6, No. 3, September 1977, pp. 594-606.

[7] M. Lu, “Constructing the Voronoi Diagram on a Mesh-Connected Computer,” Proc. International
Conference on Parallel Processing, St. Charles, Illinois, August 1986, pp. 806-811.

(8] A. Menn and A.K. Somani, “An Efficient Sorting Algorithm for the Star Graph Interconnection
Network,” Proc. International Conference on Parallel Processing, St. Charles, Illinois, August 1990,

pp- 1-8.

[9] F.P. Preparata and M.I. Shamos, Computational Geometry, An Introduction. Springer-Verlag,
New York, 1985.

[10] K. Qiu, H. Meijer, and S.G. Akl, “Parallel Routing and Sorting on the Pancake Network,” Proc.
International Conference on Computing and Information, Lecture Notes in Computer Science 497,
Springer-Verlag, pp. 360-371, 1991.

. [11] I. Stojmenovié, “Computational Geometry on a Hypercube,” Proc. International Conference on

Parallel Processing, St. Charles, Illinois, August 1988 pp. 100-103.

