67

An Experiment Using LN for Exact Geometric Computations

Jacqueline D. Chang

Victor Milenkovic*

Harvard University Division of Applied Sciences
Center for Research in Computing Technology
Cambridge, MA 02138

1 Introduction

There has been extensive recent research in finding ro-
bust and efficient numerical representations for geomet-
ric objects. Ideally, one would like to use the field of
real numbers with the operations of addition, subtrac-
tion, multiplication and division and taking roots of
polynomial equations. The standard floating-point rep-
resentation seems to be a reasonable approximation to
real arithmetic, as it is fast, universally available, and
well supported by programming languages [3]. However,
.on any computer architecture, the set of representable
floating-point numbers is a finite subset of the set of real
numbers, and the output of any floating-point operation
must be rounded to a representable number. Geomet-
ric algorithms are especially sensitive to the effects of
round-off error because the behavior of an algorithm is
determined by the signs of expressions on the inputs. If
the actual value of an expression is near zero, even a
small amount of round-off error can cause its computed
value to have the wrong sign. It is possible that the
signs computed for a collection of expressions do not
correspond to any realizable geometric object. When
this happens, the floating-point implementation of an
algorithm will fail in some unpredictable manner. It is
generally possible to create geometric algorithms that
always generate a realizable output by enforcing consis-
tency among the signs [13] [1]. Even so, only for a few
geometric constructions have methods and proofs been
given that the resulting objects have reasonably small
numerical errors [9] [10] [4] [5].

Assuming integral or rational inputs, it is always possi-
ble to implement a geometric algorithm so that it only
needs to test the signs of polynomial expressions with
integer coefficients and variables. For example, if the
geometric objects being represented are “linear” (lines
or planes), then one can use exact rational arithmetic,
and the sign of a rational number is determined by the
signs of its integer numerator and denominator. For
non-linear domains, such as quadrics or spline curves
and surfaces, there are techniques involving resultants
that can reduce any computation to the sign of an inte-
ger determinant. Even in the “linear” case, the size of
the integers can grow quite large. In fact, we know of
no way of avoiding exponential growth in the size of the

*Supported by NSF grants NSF-CCR-91-157993 and NSF-
CCR-90-09272

numerator and denominators for a sequence of opera-
tions on polyhedral solids: union/intersection, transla-
tion/rotation, convex hulls. In general, exact arithmetic
is not an efficient alternative to floating-point arith-
metic, even though it solves the problems of robustness.

It has been observed that most of the time, the floating-
point expression has the correct sign and there is no
need to use exact arithmetic. Fortune and Van Wyk [6]
have developed LN, a system for efficient exact arith-
metic based on this principle. The challenge is deter-
mining when exact arithmetic is not needed. At compile
time, LN derives error bounds for each expression and
outputs C++ code. At run-time, this code first evalu-
ates the expressions in floating-point. If the magnitude
of the resulting value is-greater than the error bound,
it returns the resulting sign. If not, the code then uses
the full precision required for an exact evaluation. It
appears that in practice, LN generates programs that
are more efficient than systems that use many levels of
accuracy [8].

In this paper we describe an experimental application of
LN to the task of implementing a geometric algorithm.
We first implemented a naive floating-point algorithm
for taking the union and intersection of polyhedral solids
and then translated it into LN. This algorithm was cho-
sen because it is relatively small but requires a sufficient
amount of computation to test the practicality of LN.
The translation exceeded the precompiled limits of the
system because of the sheer number of expressions re-
quired, even though the algorithm is relatively simple.
Fortune and Van Wyk indicate that implementations
using exact arithmetic require a different philosophy
from floating-point implementations, so it was not sur-
prising that the direct translation “overloaded” the sys-
tem [2]. We next made some changes to the primitives,
reducing the number of expressions required and their
degrees such that the code could be compiled (result
was 8671 lines of C++).

Most of the required changes illustrate that using any
exact arithmetic package efficiently is difficult because
it involves a different and nontrivial kind of thought
from that required when using floating-point arithmetic.
For example, it is sometimes necessary to replace a sin-
gle evaluation of a high degree expression with several

1We estimate the result without the limit to be about 24,000
lines of C++ to evaluate three geometric primitives, which we
considered to be impractically large.

68

evaluations of lower degree expressions. However, there
were certain design choices in the current version of LN
which made translation especially difficult, specifically,
the need to treat each type of object separately. A ge-
ometric point can be one of many types: a vertex of
the input polygon, the intersection of an edge of one
polygon and a face of another, the intersection of two
line segments. Any expression acting on points, such
as one needed to test whether four points are copla-
nar, would have to be replicated to include a version for
each possible combination of input types. This results
in a number of expressions exponential in the number of
types. Currently, there is no way of automatically. gen-
erating all these expressions. Also, the goal of reducing
the number of types (and thus the number of expres-
sions) is sometimes in conflict with the goal of reducing
the degrees of the expressions.

Our suggestion is to use dynamic evaluation of the er-
ror bounds, which the developers of LN had previously
considered and rejected because of the higher estimated
cost of computation at run time. Using the dynamic ap-
proach allows the use of the C++ inheritance and class
derivation mechanisms to simplify the code in terms of
its length as well as the amount of expertise required
in its design. Although this approach sacrifices run-
ning time, it eliminates the combinatorial explosion in
the number of expressions and other difficulties that we
encountered. Partly as a result of our experiments, For-
tune and Van Wyk are currently creating a version of
LN with dynamic evaluation to see whether the compu-
tational demands are, in fact, too high.

The naive union/intersection algorithm is presented in
Section 2; Section 3 discusses the implementation of the
algorithm using LN; and Section 4 discusses the issues
that arose and describes the alternate approach of using
dynamic evaluation.

2 The Algorithm

We first implemented an algorithm for taking the union
and intersection of polyhedra using floating-point arith-
metic. The implementation is naive in that it treats
floating-point arithmetic as if it were valid rational arith-

metic, ignoring any problems that might arise from round-

ing.

In our experiments, the polyhedra are represented by
the coordinates of their vertices rather than by the equa-
tions of the planes of the faces. We chose the vertex
representation for a number of reasons; for example,
the plane representation risks large errors when rotat-
ing, especially at points far away from the center of
rotation [7]. The vertices have integer homogeneous co-
ordinates, and the faces of each input polyhedron must
form a face lattice in three dimensions; a set of trian-
gles such that any two triangles are either disjoint or
share either a vertex or an entire edge in common [11].
Any non-triangular polygonal face can be represented
as a set of coplanar triangular faces. Representing faces
as sets of triangles is sufficient to illustrate numerical
issues; in practice, more sophisticated data structures
and algorithms would be used. The algorithm returns
the union or intersection of the two polyhedra.

2.1 Accommodating the Polyhedra

First, the polyhedra have to be “accommodated,” that
is, vertices and edges need to be added such that the
union of the vertices and edges of the two polyhedra to-
gether form a face lattice. For example, the unaccom-
modated polyhedra in Figure 1 might look like Figure 2
after accommodation. Suppose we are accommodating
polyhedron P with respect to polyhedron Q. For each
face ABC of P, we find the set of intersection of each
face of Q with the plane of ABC. These edges are found
by first computing, for each face DEF of Q, to which
side of the plane of ABC D, E, and F lie. The position
of D with respect to ABC is determined by the sign of
a four by four integer determinant (Section 3.1). From
this information, it is possible to find the edges of inter-
section. For example, if all three vertices of DEF are
found to be in the plane of ABC, the set of edges would
be all three edges of DEF.

Suppose the edges of DEF intersect the plane of ABC
in two points. These are the endpoints of the segment of

.intersection of DEF with respect to the plane of ABC.

Switching the roles of ABC with DEF gives the end-
points of a collinear segment. The four endpoints can
be ordered linearly with respect to any of the x, y, and
z coordinates to deduce the intersection of the two seg-
ments, which is the intersection of the two faces. If an
endpoint of the intersection is on an edge of ABC, a
new vertex is added there, and the edge of the trian-
gle split at that point. We now have a set of segments
which may look like that.in Figure 3.

If any edge of DEF lies in the plane of ABC, we need
to find the portions of that edge that lie inside the face
ABC, adding new vertices and splitting the edge as
needed. The intersection of two line segments is found
by parameterizing the lines determined by the two seg-
ments. We only want those segments inside the face; to
determine if a segment is in the face, we check whether
its midpoint is in the face using cross products. The
result would be as in Figure 4.

Next, additional segments need to be added such that
each closed region inside the face is a triangle as in Fig-
ure 5, and thus the accommodated polygon is once again
a face lattice. Segments are added as long as they do
not intersect any previously existing or added segments.

2.2 Finding the Union/Intersection

Since we have accommodated the polyhedra such that
their faces together form a face lattice, each face f of
P will be a proper subset of 1) the boundary, 2) the
exterior, or 3) the interior of Q. For (1), if f equals
g € Q with the same normal direction, then a single
copy of f and g appears in (the boundaries of) PN Q
and P U Q); otherwise, neither appear. If (2), f appears
in PuQ. If (3), f appears in PN Q. To test if f
lies inside @, we project a ray r from the centroid of
f in some random direction. For each face g of @, the
intersection point v of r with the plane of g is computed,
and then v is tested if it lies inside g. The number of
faces pieced by r is odd if f lies inside Q and even if
outside. The same process is applied to each face of Q
with respect to P.

3 LN

Steven Fortune and Christopher Van Wyk have devel-
oped a programming language called LN, designed to
provide efficient exact arithmetic for computational ge-
ometry. LN is based on the fact that many geometric
primitives are actually the evaluation of signs of poly-
nomial expressions [6], which can always be written as
polynomials in the input coordinates. This is evident if
the inputs are all “original” vertices. Suppose, however,
that at least one of the input vertices to a primitive is
derived, say, as the intersection of an edge and a plane.
The homogeneous coordinates of computed vertices can
themselves be expressed as polynomial expressions in
the original inputs and then substituted into the ex-
pression for the geometric primitive. All the variables
in the resulting expression are now coordinates of orig-
inal vertices.

LN generates C++ code which uses floating-point arith-
metic to evaluate expressions and which uses exact arith-
metic only when necessary. At compile time, a maxi-
mum error bound is computed for each expression from
the maximum error that could be incurred from round-
ing each variable in the expression. At run time, the
floating-point values of each variable are first used to
evaluate the expression, and the magnitude of the re-
sult is compared to the precomputed error bound for
that expression. If the computed magnitude of the ex-
pression is greater than that of the error bound, the
computed sign must be correct and no further compu-
tation is necessary. It is only when the magnitude of
the expression evaluated in floating-point is less than
the error bound that exact evaluation of the expression
is required. An implementation using LN can be about
as fast as a “naive” floating-point implementation and
it can be even faster than a robust floating-point imple-
mentation because it does not have to use tolerancing
and other techniques to achieve reliability.

3.1 Translation into LN

To implement an algorithm using LN, it is necessary
to know the possible types of the inputs for each ex-
pression. LN will treat each combination of input types
separately even if the expression itself is the same. For
example, a half-plane test with all original vertices will
have a different error bound than one in which all three
vertices are computed, and these cases will be treated
differently. We need to find how many different types
of vertices are involved in the union/intersection algo-
rithm, and which expressions they could be inputs to.

An accommodated polyhedron can have three different
types of vertices: original input vertices (type 0), ver-
tices derived as the intersection of a segment and a plane
(type 1), and vertices derived as the intersection of two
line segments, whose endpoints are all original (type 2).
The coordinates of all three types can be expressed as
polynomials in the coordinates of the points from which
they were derived.

Clearly, each original coordinate is a degree 1 polyno-
mial. To compute the intersection of a segment AB and
a plane CDE, parameterize segment AB as sA + tB,
and find (any) s, t such that det(sA+tB,C, D, E) = 0.

69

Solving, we find that s and t are fourth degree polyno-

~mials, and since type 1 vertices have the form sA + tB,

they are of degree 5. Type 2 vertices are derived in a
similar fashion; they are of degree 4. We also need to
compute the centroids of faces and the intersection of

"rays and faces. We find that there are 10 different types

of each.

We next determined which of these points could be in-
puts to which expressions, and tabulated the results:

PRIMITIVE # EXPS POSSIBLE INPUTS
Point-in-plane 1 type 0
Vertex comparison 6 type 0, 1, 2
Half-plane 10 type 0, 1, 2

10 10 centroids, type 0

10 10 ray casts, type 0
TOTAL 37

The first 10 half-plane tests come from the 10 ways to
input the three different types of vertices. (Note that
inputting vertices of types 0, 1, and 1 is considered to be
the same as inputting vertices of types 1, 0 and 1.) The
second 10 come from testing to see whether a centroid is
in a face for the degenerate case of two coplanar faces.
Because the face being tested will always have three
original vertices, there are only 10 cases, one for each
type of centroid. The third 10 come from testing to see
whether the intersection of a random ray and a face lies
in the face, but again the face always has three original
vertices.

LN was “overloaded” when it tried to compile all of
the code required for the 37 expressions and the sepa-
rate constructors for the 23 different types of points. It
could only compile about two-thirds of the LN code, but
had already written about 16,000 lines of C++. There
was evidently much more code required than the imple-
mentors of LN had anticipated, even for a small example
such as this. Clearly, we had to change the set of expres-
sions we used to evaluate the primitives and find ones
which were optimal for exact evaluation, particularly in
LN. ‘

3.1.1 Optimizations

The first optimization had already been implemented in
the accommodation of the polyhedra. Instead of test-
ing whether a segment is inside a face by computing the
midpoint of the segment and doing a point-in-face test,
we conclude that a segment is in a face if both of its
endpoints are in the face, and thus we avoid computing
an extra type of vertex. The midpoint was calculated
in the floating-point version to simplify the algorithm.
The use of auxiliary points often eliminates considera-
tion of degenerate cases; however, it is not suitable for
exact arithmetic because of the resulting higher degree
expressions, and it is particularly unsuitable for LN be-
cause it introduces a new type of vertex.

The next change was suggested by Dr. Fortune. Instead
of computing type 2 vertices as the intersections of two
segments, these points are now computed in the same
way as type 1 vertices. A fifth point F not in the plane
of the intersecting segments AB and CD is chosen at
random, and the former type 2 vertex is computed as

70

the intersection of segment AB and plane CDE. This
eliminates type 2 vertices, reducing the total number of
types of vertices to 2. Now there are only 4 types of
faces, and any function that takes 3 vertices as inputs
has only 4 possible combinations of inputs instead of 10.
Note that this change is specific to LN and is not optimal
for exact arithmetic in general; the vertices converted
from type 2 to type 1 are now of higher degree (5 instead
of 4), and all the expressions involving these vertices are
larger than necessary from the point of view of exact
evaluation.

Another alteration is based on the observation that it
is unnecessary to compute the actual intersection of a
random ray and the faces it is being projected onto.
Instead, it suffices to check the orientations of certain
groups of four vertices. The ray r projected out of cen-
troid ¢ hits the plane determined by the face ABC if
det(cABC) and det(r ABC) have different signs, and it
passes through the face ABC if det(rcAB), det(rcBC),
and det(rcCA) all have the same sign. This technique
avoids computing the high degree point v where the
ray r hits the plane ABC, and it avoids computing a
point-in-face test with v, a computation that evaluates
expressions of degree 21. This change is not specific to
LN, and it illustrates the difference between floating-
point and exact arithmetic and the level of difficulty
involved in finding efficient ways to evaluate geometric
primitives.

With these optimizations, the total number of construc-
tors needed was reduced from 23 to 13, and the total
number of expressions needed was reduced from 37 to
21. The code was now reduced to a sufficiently small
size such that it could be compiled.

These optimizations were by no means the only pos-
sible changes that could have been made. For exam-
ple, consider determining the segment of intersection of
two faces. This involves finding the linear ordering of
four collinear type 1 vertices. The implemented exact
algorithm accomplishes this by using a fifth coplanar
point which is not collinear with the four points being
ordered (in the algorithm, a type 0 vertex can always
be found which fulfills these criteria), and half-plane
tests are performed with this fifth point and pairs of
the collinear points, revealing the relative positions of
the four points along the line. As these half-plane tests
involve two type 1 vertices (degree 5) and one type 0 ver-
tex (degree 1), the half-plane expressions are of degree
11. However, given a point p which is the intersection of
segment AB and the plane of CDE, we are essentially
trying to determine whether p is in the face CDE. This
can be equivalently done by testing the orientations of
four tetrahedra, ABDE, ABEF, and ABFD. They
will all be of the same sign if and only if p lies inside
DEF. Notice that the degree of these expressions is
only 4 since all vertices involved are type 0. Again, this
example shows the consideration on the part of the user
required to use exact arithmetic efficiently.

These examples dramatically illustrate the difficulties in
converting to exact arithmetic. There is no systematic
or mechanical way of reducing the degrees of expressions
or eliminating them entirely, nor is there a way to me-
thodically reduce the number of vertices that need to be
computed. We also see that in some cases the current

design of LN. requires extra changes, some of which are
not optimal for exact arithmetic in general.

4 Using LN: Issues

The above example of finding the union and intersection
of two polyhedra is a relatively small one; what happens
when the application is even more complex than this?

4.1 Specific Issues

I. For a three-input orientation primitive, having two
vertex types 0 and 1 happens to be convenient because
regardless of the order of the vertices in the code, it is
always possible to rotate them to fit one of the four com-
binations of 000, 001, 011, and 111 without changing
their orientation. In general, things are not so simple;
Polya-Burnside enumeration indicates a minimal set of
combinations of input types that a primitive must han-
dle, and a whole layer must be added in the program on

‘top of the expression evaluation to convert any ordering

of the inputs to one of these combinations. It quickly
becomes difficult to do all the bookkeeping necessary to
keep track of all the different cases.

II. There is a tradeoff between minimizing the degrees
of expressions and minimizing the number of types and
hence the number of expressions. For example, consider
the case where two triangles intersect only in one point
which lies on an edge of each triangle. This point can be

- computed as the intersection of these two edges to yield

a vertex whose coordinates are degree 4, as opposed
to finding. this point as the intersection of a line and a
plane, of degree 5. To avoid introducing a new type and
many new expressions in LN, it is necessary to use the
computation with higher degree.

III. There is the tradeoff between smaller degreed ex-
pressions and the number of such expressions that need
to be evaluated. The example in Section 3.1.1 demon-
strated that the ordering of the four collinear points can
be done by either evaluating 12 degree 4 expressions or
5 degree 11 expressions. Currently, LN forces the choice
of many smaller degree expressions, which may not be
the optimal choice in general.

IV. Consider the cases where there are a large number
of degeneracies; i.e. when the value of many of the ge-
ometric expressions is zero. For each of these cases, the
magnitude of the floating-point computation will always
be smaller than that of the maximum error bound, re-
quiring an exact computation to verify that the expres-
sion really does equal zero. When modeling the real
world, there are likely to be many of these degenerate
cases; for example, objects lie in the plane of the floor,
or of a tabletop, and walls, ceilings, and floors are par-
allel or perpendicular to each other. A system like LN
may be forced to do exact computations more often than
statistics derived from a uniform distribution of inputs
might suggest.

V. Like any reasonable exact arithmetic system, LN lim-
its the input values to some specified bit length. The
output of our polyhedral union/intersection algorithm
could not be used as input to the same code, since the

explicit bit lengths of some of the output vertices will
be significantly larger than the input vertices; type 1
vertices will be about 5 times as big. We cannot ex-
pect to avoid this growth in bit length by keeping the
vertex locations implicit through introduction of new
types. Even if LN allowed dynamic definition of types,
the number of resulting expressions would grow expo-
nentially. One needs to try to find “safe” ways of round-
ing the output coordinates back to small integers in a
way that either preserves the combinatorial structure or
modifies it in a reasonable manner. Milenkovic [11][12]
proposes such a rounding algorithm, but an efficient al-
gorithm is yet to be found.

Issues I, II, and III indicate ways that the current de-
sign of LN increases the programmer effort over that
generally required for implementation using exact arith-
metic. These difficulties might be eliminated through
the use of dynamic error evaluation as described in the
next section. Issue IV is faced by all exact arithmetic
systems that attempt to reduce cost by using floating-
point whenever it is sufficiently accurate. It remains
to be seen how much impact it will have in practice.
Issue V is faced by all exact arithmetic systems, and
geometric rounding is one possible solution.

4.2 Dynamic Evaluation

The main bottleneck in using LN is having to treat each
type of vertex separately. Suppose that instead of static
evaluation of error bounds at compile time, it used dy-
namic evaluation at run time. This would allow the
programmer to use a single C++ base class vertex from
which all the different “types” of vertices are derived.
Thus, all of the expressions which formerly had a dif-
ferent instance for each combination of types of inputs
would only have one instance because the types of the
inputs would all be of a single type “vertex.” At run
time, when an expression is instantiated, C++ virtual
functions in the vertex class would provide the following
values for each coordinate: its floating-point approxima-
tion, an upper bound on its magnitude, an estimate of
the number of bits of error, and (if an exact computation
is necessary) its exact value. Virtual functions provide

the ability to reference these values for each particular.

vertex without explicit knowledge of the vertex type.

Using this dynamic approach saves much coding time
but sacrifices running time; however, for large applica-
tions, a small increase in running time would certainly
be an acceptable tradeoff for the large decrease in pro-
gramming effort and output code size (which also might
adversely effect running time through excessive page
faults). In fact, any naive floating-point algorithm such
as the one described in Section 2 could be translated
almost directly into a dynamic evaluation scheme, al-
though it might not be as efficient as a well thought out
exact implementation.

5 Conclusion

There seems to be a conflict between robustness and
practical efficiency of geometric algorithms. The lan-
guage LN, while achieving its goal of increasing effi-

7M1

ciency of exact arithmetic at run time, may turn out
to be impractical when the sheer size of the code and
the time spent in designing and implementing such a
large program is taken into account. A possible im-
provement is to use dynamic evaluation, which would
save most of the time and effort that is required to pro-
gram using the current LN package. It is both time
consuming and intellectually demanding to keep track
of the types of all the computed quantities, to enumer-

* ate the different functions for each of the different pos-

sible combinations of input types, and to make clever
optimizations to reduce the number of types. These de-
mands are in addition to those ordinarily required to use
exact arithmetic: to simplify and minimize the degrees
of expressions. The dynamic approach would sacrifice
a small factor in running time but when considered on
the whole, is certainly the more acceptable alternative.
We propose that LN be modified to test this paradigm.

References

[1] T. K. Dey and C. L. Bajaj and K. Sugih&a. “On good
triangulations in three dimiensions” Internat. J. Comput. -
Geom. Appl. 2:1 (1992), pp. 75-95.

[2] S.Fortune, C.Van Wyk. “LN User Manual.” AT&T Bell
Laboratories, 1993.

[3] S. Fortune. From Directions in Geometric Computing, In-
formation Geometers, publishers, 1992.

[4] Steven Fortune. Stable Mainténance of Point-Set Triangu-
lations in Two Dimensions. In 30th Annual Symposium
on the Foundations of Computer Science, IEEE, October
1989. -

[5] S. Fortune and V. J. Milenkovic. Numerical Stability of
Algorithms for Line Arrangements. Seventh Annual ACM
Symposium on Computational Geometry, North Conway,
N.H., June 10-12, 1991, pp. 334-341.

[6] S. Fortune, C. Van Wyk. “Efficient Exact Arithmetic for
Computational Geometry.” Proceedings of the Symposium
on Computational Geometry, ACM, 1993.

[7] C. M. Hoffmann. Geometric and Solid Modeling, Morgan
Kaufmann, publishers, 1989.

[8] M. Karasick and D. Lieber and L. R. Nackman. Efficient
Delaunay Triangulation using Rational Arithmetic. ACM
Transactions on Graphics, 10:71-91, January 1991.

[9

—

Victor J. Milenkovic. Verifiable Implementations of Ge-
ometric Algorithms using Finite Precision Arithmetic.
Technical Report CMU-CS-88-168, Department of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA
15213, July 1988.

[10] Victor Milenkovic. Calculating approximate curve arrange-
ments using rounded arithmetic. In Proceedings of the
Symposium on Computational Geometry, ACM, 1989.

[11] V. Milenkovic. “Rounding Face Lattices in d Dimensions.”
Proceedings of the Second Canadian Conference on Com-
putational Geometry, Jorge Urrutia, Ed., University of Ot-
tawa, Ontario, August 6-10, 1990, pp. 40-45.

[12] V. Milenkovic. “Rounding Face Lattices in the Plane.” First
Canadian Conference on Computational Geometry, Mon-
treal, Quebec, Canada, 1989.

[13] K. Sugihara. Construction of the Voronoi diagram for one
million generators in single-precision arithmetic. Report
89-05, Dept. Math. Engrg., Univ. Tokyo, Tokyo, Japan,
1989.

72

Fig. 1

Fig. 3

= &7

Fig. 2

Fig. 5

Fig. 4

