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Abstract

Making safe and consistent decisions is essential to geo-
metric algorithms. Quite a few solutions to this problem
have been suggested in the recent years, but they generally
ask that drastic changes be made to algorithms. A simple
and efficient paradigm is suggested here, which enables pro-
grammers to forget about precision issues altogether, what-
ever algorithm they intend to implement.

The paper describes a lazy ezact arithmetic library (LEA)
based on this paradigm and its operation in a typical situ-
ation from Computational Geometry.

1 Introduction

Lazy languages (ML, Miranda) emerged a few years
ago, introducing the strong paradigm of laziness:
“Why should a quantity be evaluated if it is never
going to be used later?” The same applies to preci-
sion: “Why should a quantity be computed ezactly if
it is never involved in conflicting issues later on?”

Of course, if brutally implemented, such an obser-
vation would be fatal in situations where some exact
information — that was available but not needed at one
stage — becomes indispensable but no longer accessi-
ble, later on!

Although there is no way to predict when they
do arise, such situations are not infrequent in ordi-
nary computations, and the simplest, safest preven-
tion is to memorize — when st:ll possible — as little as
will prove sufficient for complete information retrieval,
should this ever become necessary at ‘a later stage.

Why should we ever be concerned with precision
issues, let alone lazy paradigms? Section 2 briefly re-
views precision problems in Computational Geometry
and their treatment by the most widely used tech-
niques. Section 3 presents the objectives and princi-
ples of a lazy library. In section 4, laziness is shown in
operation on a famous problem from Computational
Geometry and Section 5 concludes on future work.

2 Precision and Geometry

Computational Geometry deals with algorithms on
real points, lines, planes, solids... as modelled on a
finite-precision machine. Most of the time, processors
truncate digits, round off results, and almost every
decision made by any program is biased! Naive algo-
rithms often process data independently. The conse-
quence of an error is then most likely local. However,
optimal algorithms generally depend on the coherence
of the inputs to guarantee coherent outputs. For them,
any error may start a chain reaction that will corrupt
the global solution, or even cause system crashes, be-
cause the logic of the objects they model and that of
the data they manipulate are no longer consistent.

We shall use the following problem to illustrate our
discussion: Given N distinct segments in the plane,
detect and identify all K € O(N?) intersections be-
tween them. There are basically three methods for
solving this problem: a brutal and always quadratic
algorithm (test the intersection of all possible pairs of
segments), the more sophisticated O((K + N)log N)
algorithm due to J.L. Bentley and T. Ottmann ([1]),
and finally the optimal O(K + N log N) algorithm by
B. Chazelle and H. Edelsbrunner ([3]).

The first, “brute-force” algorithm is straightfor-
ward and is known to be extremely robust, if not com-
putationally efficient.

“Bentley-Ottmann’s” algorithm is so famous that
we refer the reader who would be unaware of its prin-
ciples to [1] (the original paper), [24] or [16] where it
is further described, commented upon and analyzed.
We shall just need to know that this algorithm uses a
vertical sweep-line moving from —oo to +00, supposed
to model, at the end of each iteration, the vertical or-
der of all segments it intersects. It is also well-known
that this algorithm is extremely sensitive to machine
errors (cf. 2.1), and therefore is a very good candidate
for testing the virtues of laziness.
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We intend to implement Chazelle-Edelsbrunner’s
algorithm in the future to measure its sensitivity to
precision, which should be much less than Bentley-
Ottmann’s. Interestingly enough, the authors of [3]
use a “functional approach to data structures” ([2]),
that shows similar concerns, to some extent, to the
lazy paradigm described in this paper.

2.1 Djinns

Define z-order (y-order) as the natural order on ab-
scissz (ordinates) — noted >, (>y) — and zy-order as
the usual lezicographical order on points (z-order, then
y-order for ties) —noted >;,. Now suppose a facetious
djinn exchanges the positions of two elements in the
zy- or y-order while Bentley-Ottmann’s algorithm is
running: There is no way to guarantee that the results
will be valid, or even that the process will terminate.

This supernatural intervention is likely to perturb
the execution of procedures manipulating z- and zy-
order data structures since the invariants of such struc-
tures are no longer preserved. The program will in-
variably abort or wind up in theoretically impossible
(topolo-)logical conflicts ([17]).

Bentley-Ottmann’s method assumes it is possible to
sort endpoint or intersection coordinates reliably, and
this may no longer be guaranteed when finite preci-
sion is used. Consider the following example (refer to
Figure 1): Each square has unit length sides, so A =
(0,0),B =(1,3),C = (0,2),D = (1,2). Furthermore,
the abscissa of both E and F is equal to the floating
point number 0.666667. ABNCD = Q = (£,2). In the
machine, and in the best case, Q will be represented as
a point Q* such that, say, O* = (0.666667,2). The ver-
tical segment EF has been chosen so that, according
to the real z-order Q <zy E <y F, whereas we have
E <gzy O <gy F on the machine. Q* will therefore be
inserted after E in the z-order, which is wrong: This
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Figure 1: Djinns and Bentley-Ottmann’s algorithm.

is just how a minor numerical error becomes topologi-
cal, and imprecision plays the part of a facetious djinn.

A last remark: Imprecision only has serious con-
sequences when it alters the order between numbers.
This means that finding a good lazy remedy to pre-
cision problems is to cure them when they become
hazardous for coherence, and to leave them alone oth-
erwise!

2.2 A collection of published solutions

Quite a lot of research has been devoted to finding so-
lutions to numerical imprecision. Extensive accounts
on this topic may be found in [18] and the other
sources below. For the purpose of this paper, we shall
only give the outlines of a (non-exhaustive) classifica-
tion.

1. Solutions based on pure floating point arithmetic

(a) Numerical solutions
i. Epsilons (popular folklore)
ii. Finite exact precision ([4], [9], [18], [19])
iii. Epsilon geometry ([8], [25])
(b) Geometrical solutions
i. Adaptive geometry ([7], [18], [20])
ii. Robust geometry ([10], [13], [18])
iii. Constructive geometry ([11])
iv. Symbolic geometry ([18])

2. Solutions based on an exact library
3. Perturbation techniques ([5], [26])
4. Mixed solutions

(a) Solutions based on one exact operator ([23])
(b) Semi-exact solutions ([14], [17])
(c) Reluctant algorithms ([22])

Solutions in class 1 compensate for numerical impre-
cision with floating point tools using either purely nu-
merical or purely geometrical strategies. Most of these
solutions may only be applied to specific problems,
and generalizations are difficult.

Solutions in class 2 solve imprecision problems us-
ing an exact representation for data, and hence are
extremely greedy in time and space.

Solutions in class 3 do not attempt to solve pre-
cision problems, but remove degeneracies from com-
putations by appropriately perturbing the data, and
require an exact module — all the same.

Solutions from class 4 are much more universal in
essence, and use two types of representations for the
data to achieve consistent decisions. The present work
originates from solutions 4(b) and 4(c).



3 LEA
Objectives

The lazy rational library is an independent module,
which may be used by virtually any program in a
C/C++ environment. It has five major objectives:

1. It must be exact (yielding consistent results, and
results consistent with the data). Moreover, the
library must provide for the basic arithmetic op-
erations on lazy numbers (+, *, invy, inv,) and
comparisons. Extensions have in fact been added
to allow more sophisticated operators.

2. It must be transparent to the programmer who
will use LazyNumbers instead of (but in exactly
the same way as) floats.

3. It must be fast, and use as little resources as pos-
sible (i.e. slightly more than floating point solu-
tions, but much less than exact solutions).

4. It must depend on the built-in floating point
arithmetic of the machine and an exact arith-
metic module — possibly user-defined — without
explicitly depending on whatever exact repre-
sentation is chosen. Thus, it should be possi-
ble to replace rational numbers with algebraic
numbers without disturbing the operation of the
lazy library. This means that specific modules
should be made available for working with alge-
braic numbers, etc.

5. Programs based on valid algorithms, running suc-
cessfully with floating point arithmetic (but pos-
sibly crashing in degenerate situations) must ter-
minate successfully with the lazy library (even in
the presence of such degeneracies as accepted by
the underlying algorithms). ‘

Principles

Multiple representation: A lazy number is repre-
sented as an inlerval and a formal definition. The
interval is bounded by two floats and must contain
the underlying number (the one modelled by the lazy
number). The definition is a field that conveys, at any
moment, sufficient information to produce the exact
representation of the underlying number.

Intervals: Any data inputted in a program must be
assigned an interval (by the library itself). Methods
for this, justifications, treatment of over- and under-
flow exceptions will be covered in depth in [12].
Definition fields: When a lazy number is first en-
countered, its definition field is unevaluated and is ba-
sically made up of a node for an operator and pointers
to operands. Another way to look at this is to say that
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the formal expression for any lazy number is a treel.
For instance, if a, b, ¢ are three lazy numbers, the def-
inition field for 1

z=a+

has a node containing the binary operator “+”, itself
pointing to two “subtrees” (one for “a”, another for
subexpression “inv,(b+ ¢)”).

The important thing is that no evaluation is done
when the definition field of a lazy number is con-
structed. In other words, the construction of the dag
for any elementary arithmetic operation is a constant
time and space process, as opposed to evaluation.
Evaluation: Intervals tend to grow with the num-
ber of arithmetic operations. If this becomes a prob-
lem (see comparing lazy numbers, or computing their
reciprocal below), the only way out is evaluation, a
process involving the definition fields. When a lazy
number actually needs being evaluated, its definition
field is simply filled with the exact representation of
the evaluated underlying number. The definition field
is then said to be evaluated.

Incidentally, if a node in the definition dag of an
evaluated number is not referred to by any other ex-
pression, it may disposed of. Hence, some sort of
garbage collection must be arranged.

There are only three reasons why a lazy number
should ever be evaluated:

1. When it is compared with another lazy number
whose interval intersects its own,

2. When its reciprocal is required and its interval
lies on both sides of 0, and

3. When the evaluation of a lazy number referring
to it is called for.

Refreshing intervals: The most natural evaluation
strategy consists in a recursive procedure that evalu-
ates all the children of a given node, and then evaluates
it with the help of the operator it contains. During
this process, tighter interval bounds from lower levels
bubble up to the current node, allowing to update and
“refresh” the node interval itself.

Comparisons: If the numbers have non-overlapping
intervals, the relative positions of these intervals (and
hence of the two numbers) may be found in O(1).
Else, the intervals have grown too large and must be
“refreshed”. If intervals still overlap after evaluation,
compare the numbers using exact arithmetic.

1 Actually, it is a dag (for directed acyclic graph), since the
node for a lazy number may be pointed to by as many other
lazy numbers as needed in the application programs
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Arithmetic operations: Interval arithmetic ([15],
[21]) allows a straightforward definition of the inter-
vals resulting from the sum, difference and product
of two lazy numbers (represented by their own inter-
_vals). As for the reciprocal of a lazy number, the situ-
ation is more complex. Let z be any lazy number, and

I, = [, (] its associated interval. Clearly, if 0 & I,
1

the image of I, under z — 1 is another interval [§, 2].

with only one connected component, and the recip-
rocal of z is well defined. Else, the image has two
disjoint connected components and exact evaluation
is required. Note that evaluation will yield a new and
tighter interval for both z and its reciprocal.

Implementation: We have chosen C++ to imple-
ment the lazy library, as this language allows operator
overloading (writing “a < b” in a program although a
and b are not floats but “LazyNumbers”). Garbage
collection is not provided for in this language, but has
been made possible through the use of reference coun-
ters on rationals and arbitrary length integers. The
library consists in an interval module (arithmetic on
floating-point intervals), a rational module (arithmetic
on arbitrary length integers in large base, and ratio-
nals), and a lazy module (operations on lazy numbers).

4 Using the lazy library

From a general standpoint, using a library such as the
one described above, is straightforward. Data struc-
tures and objects refer to lazy numbers explicitly, in-
stead of floating point numbers. Such a test as “if
point p is to the left of the directed line through (g, r)”
is coded using determinants ([24]) as usual. Whether
the outcome of this test is computed with floating
point arithmetic only or with the extra help of ex-
act arithmetic is not for the programmer to know, but
for the lazy library to decide.

4.1 Putting it all together

Writing Bentley-Ottmann’s algorithm in program
form is no easy process, and even less so when testing
a new library. Specifying the library as was done ob-
scures many details that only become apparent when
things don’t go the way they should.

Although it is only possible to scratch the surface
of things in this paper, here is a brief list of the prob-
lems one is faced with when implementing a lazy exact
library. Remember that the underlying goal is to solve
these problems ahead of time, and at the lowest level,
to relieve programmers from precision issues.

o Preventing useless evaluations when comparing
lazy numbers. For an interesting subproblem,

consider a test for comparing segment slopes,
such as “if (Slope(s) == Slope(t))”. The only
way to prevent evaluation when the two segments
are indeed equal is to teach the library how to
detect that program-defined functions (such as
Slope) may yield clones, i.e. different versions of
dags with identical structures and equal “leaves”.

¢ Allowing or forbidding the creation of identical
dags, whichever is best. This may mean using
“union-find” algorithms to take advantage of past
experience in future computations (for instance:
From a = b, and b = ¢, infer that a = ¢).

¢ Computing hash keys from unevaluated dags.
Hash tables may then be used to retrieve ge-
ometric information from co-ordinates, as often
required in Computational Geometry.

4.2 Comparing performances

We have implemented the ‘brute-force’ and Bentley-
Ottmann’s algorithms, both as a unique program for 3
versions. Linking either program with the appropriate
library module generates its floating-point, exact, or
lazy version. This means that programs running with
floating-point arithmetic may almost instantly be con-
verted into lazy applications. One of the parameters
used to compare the lazy and exact versions is the
relative precision (ranging from 10! to 10~1?) with
which inputs are encoded.

Brute-force algorithm

Note that although this version never crashes from
imprecision, it is not guaranteed to yield consistent
outputs (i.e. the resulting segment graph is not nec-
essarily planar!).

On random data (segments with endpoints drawn
randomly in [0,1] x [0,1]), the lazy version is 4 to
10 times slower than its floating point counterpart,
and always yields valid results, of course. Moreover,
it performs no exact computation and is considerably
faster than the exact version: for a relative precision
of 108, it is 40 times faster; for a relative precision of
10~9, it is 75 times faster; for a relative precision of
10~12, it is more than 100 times faster.

On more realistic data, only the indispensable com-
putations are performed by the lazy version, whence
a substantial gain. Data for which all computations
should be done in exact form are extremely rare and
artificial (for instance all segments on the same line of
support and partially overlapping). But even in this
case, the lazy version outperforms the exact version,
but is not ridiculed by the floating point version.
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Figure 2: Charts for Bentley-Ottmann’s algorithm on 50 (a) and 100 (b) segments, respectively. The charts show
the floating point version (bottom curves), the lazy version (middle curves), and the exact version (top curves).
Horizontal axes show precision, and vertical axes indicate times (in sixtieths of a second).

Bentley-Ottmann’s algorithm

The results for this algorithm are extremely encour-
aging for our paradigm. The floating point version
crashes, as expected, when running on special cases
(vertical segments, intersection of more than two seg-
ments at a same point, etc.). The overall performance
of the lazy version is slightly slower than the float-
ing point version on random data, owing to the extra
overhead for dag maintenance, as one would suspect.
The charts on Fig. 2 were obtained after running the
three versions of Bentley-Otimann’s algorithm on 50
and 100 segments, respectively, with a relative preci-
sion ranging from 10! up to 10~°. Increasing preci-
sion does not affect floating point computations (bot-
tom curves) nor lazy computations (middle curves),
but does affect rational computations (top curves):
the more accurate the computations, the more ex-
pensive the exact solution! The lazy-to-exact ratio
ranges from 4 to 75 when precision varies from 10~
to 10~°. Roughly speaking, the floating point and
lazy curves follow asymptotic complexity for random
cases, whereas the exact curves show the overhead of
unbounded precision. When the segments are ran-
domly chosen, there is virtually no exact computa-
tion, and the overhead for laziness is quite moderate.
Thus the overall price to pay for laziness is by far
more reasonable than that for exact computations: In
the vast majority of cases (segments from real scenes),
the overhead is only equal to the cost of creating and
updating dags, and the ezact/lazy ratio may be any-
where between 1 (deadly pathological cases) and 150.

5 Conclusion

The paradigm presented in this paper relegates im-
precision handling at the lowest level. It has been
demonstrated on a classical problem from Computa-
tional Geometry, but is intended to be used for any
algorithm (of rational essence) in the literature, sensi-
tive as it may be to imprecisions.

Laziness yields fast and efficient solutions which
output consistent results, even in the presence of
the worst pathological cases. Using a lazy library is
straightforward, frees programmers from precision is-
sues, and from strenuous rewriting of algorithms.

There are a few references to laziness in the litera-
ture. [14] has pioneered the use of a double representa-
tion (floats and arbitrary-length-integer intervals), but
this solution differs significantly from ours, in that (z)
it is dedicated to a specific problem, and involves non
trivial algebraic manipulations related to the problem
at hand, and (4) it relies on successive refinements
of intervals with initially loose bounds, until they can
unambiguously be declared not to include 0. Such a
process may be iterated an arbitrary number of times,
and hence its computational cost is hard to evaluate
(refer to [18] for a discussion).

A reference to lazy evaluation is made in [6]. (The
authors wish to thank the referees for pointing out,
and O. Devillers, INRIA, for providing this very recent
and otherwise unobtainable publication.) Fortune and
van Wyk seem to have a rather negative opinion of
such a scheme. The reason may well be that the main
stream of their research led them away from investigat-
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ing the true potentials of laziness. Tuning the library,
and tailoring it to the strong constraints we had opted
for, required long hours and patient (un-lazy?) work.

There are many questions left, however, among
which the detection of algebraic identity (e.g. a* (b+
¢) = bxa+axc), and such topics should act as a strong
incentive for future research. One of the major tasks
that remains to be done is to adapt the concepts in
this paper to more general settings, such as algebraic
arithmetic.
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