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Abstract

In this paper we introduce two robust estimators for fit-
ting a circular arc through-a set of points in the plane. We
introduce nonlinear Theil-Sen and repeated median (RM)
variants for circular arc estimation (CAE). We present ran-
domized algorithms for these estimators for n points in the
plane, each running in O(n?logn) expected time, and re-
quiring O(n) space.

1 Introduction

Fitting a function (e.g., a straight line) to a finite col-
lection of data points in the plane is a fundamental problem
in statistical estimation, with numerous applications. Al-
though methods such as ordinary least squares (OLS) are
well understood and easy to compute, they are known to
suffer from the phenomenon that a small number of outly-
ing points can perturb the function of fit by an arbitrarily
large amount. For this reason, there has been a growing
interest in a class of estimators, called robust estimators
(e.g-, [9], [16]), that do not suffer from this deficiency. De-
fine the breakdown point of an estimator to be the fraction
of outlying data points (up to 50%) that may cause the
estimator to take on an arbitrarily large aberrant value.
(See, e.g., Rousseeuw and Leroy [16] for exact definitions.)
The breakdown point of an estimator is a measure of its ro-
bustness. For example, the (asymptotic) breakdown point
of OLS is zero because even a single outlying data point
can have an arbitrarily large effect on the estimator.

The estimators discussed in this paper are generaliza-
tions of the following robust line estimators for a set of n
distinct points in the plane {p;,p2,...,pn}.

Theil-Sen estimator: The slope of the line of fit is taken
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to be the median of the set of (g) slopes that result
by passing a line through each pair of distinct points
in the data set [21], [17]. A number of O(nlogn) al-
gorithms (deterministic and randomized) have been
proposed for computing this estimator (e.g., Cole et
al. [6], Matousek [12], and Dillencourt et al. [8]).

RM estimator: Siegel’s repeated median estimator (RM)
[18] is defined as follows. For each point p; = (z;, ),
let 6; denote the median of the n — 1 slopes of the
lines passing through p; and each other point of the
set. The RM-slope, 0*, is defined to be the median
of the multiset {6;3. An O(nlogn) randomized algo-
rithm has been proposed by Matousek, Mount, and
Netanyahu [13].

In Mount and Netanyahu [14], we extended our algo-
rithmic methodology for the Theil-Sen and RM line esti-
mators to higher dimensions. Specifically, we showed that
d-dimensional Theil-Sen and RM estimators (having break-
down points of 1 — (1/2)!/4 and 0.5, respectively) can be
computed by randomized algorithms in O(n%~!logn) ex-
pected time and O(n) space, for fixed d > 2.

It should be noted that by the linearity of the regres-
sion model assumed, all of the above proposed methods
automatically apply to curve fitting, for curves that can be
analytically represented as a linear combination of d pa-
rameters. For example, although y = az?2 + bz +cis a
nonlinear function of z, parabola fitting does reduce to 3-
D linear fitting, since any parabola can be expressed as a
linear combination of three parameters characterizing the
parabola (e.g., a, b, and c). Put differently, if each data
point (z;,y) in E? is mapped to a corresponding point
(z:2,zi,4) = (Xi,Y:,2:) in E® (i = 1,...,n), then the
problem of fitting a parabola to a given set of points (i.e.,
estimating a, b, and c) is trivially reduced to the problem
of fitting the plane Z = aX + bY + ¢ to a corresponding
set of n points. In this paper we address the issue of func-
tion fitting in a nonlinear domain, i.e., where a function in
question may not be expressed as a linear combination of
a specified set of its parameters.
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The problem of circular arc fitting in the plane has been
considered recently by a number of researchers [10], [22],
[20], [3], [4]. Unfortunately, all of these methods are based
on a least squares approach, which suggests sensitivity to
outlying data. Amir [2] has introduced an alternative tech-
nique, the c[hjord method, which is presumably more ro-
bust, but suffers from quantization effects. All of the above
remarks suggest that deriving efficient median-based algo-
rithms for circular arc fitting should be a natural goal to
pursue.

We can generalize the definitions of the Theil-Sen and
RM line estimators to circular arcs in a natural way.
Consider a given set of distinct points p; = (z;,¥:), for
i=1,...,n, that are hypothesized to lie on a circular arc.
We make the general position assumptions that no three
points are collinear and no four points are cocircular. The
output of the estimator is the triple (@, b, #) containing the

coefficients of the circle equation (z — &@)° + (y — b)" = #2,

that fits the data. For each triplet (i, 7, k) of distinct in-
dices, 1 < 4,5,k < n, let a;jk, bijr, and 7;;; denote
the parameters of the unique circle passing through points
Pi, pj, and px. The circular arc estimators are defined as
follows.

Theil-Sen CAE: Defined by taking the median values,
over all (g) elements, of each of the above sets, i.e.,

& = med a;jr, b= med b;jr, # = med ri ;.

a ir<l?'7-e<ka‘1.71k’ ‘-l;'n]e<k '}J)k’ r i<j<kr‘lek
RM CAE: Defined by taking the median over i, of the
median over j, of the median over k of these parameters,
le.,

@ = medmed med a; j ¢, b = medmed med b; ;
O by ok TECTE by

# = medmed med r; j k.
§ i kg D

We conjecture that the breakdown points of the above

defined Theil-Sen and RM circular arc estimators are iden-
tical to their 3-D linear counterparts, i.e., ~ 21% and 50%,
respectively. Observe that the definitions described above
can be applied to determining the parameters of any type
of function, provided that for some k, each k-tuple of points
uniquely defines the parameters of the function.

Recently Stein and Werman [19] have independently
introduced similar robust estimators for fitting two-
dimensional conic sections in general. It is claimed in their
paper that estimating the more “natural” parameters of a
curve in question (e.g., geometric parameters such as loca-
tion, radius, etc.) as opposed to estimating the coefficients
of its linear representation results in superior estimators,
as far as maintaining, for example, the property of statis-
tical (rotation) equivariance. Since no method other than
a brute force computation of these estimators is suggested

in [19)], it is a valid objective to pursue alternative, compu-
tationally efficient algorithms according to the above given
definitions.

Brute force algorithms for computing the Theil-Sen and
RM circular arc estimators would require O(n%) time.
Moreover, the naive Theil-Sen estimator would require
O(n®) space which is rather inefficient. In this paper we
present randomized algorithms to compute the above es-
timators. The algorithms are conceptually simple, run in
O(n?logn) expected time, and use linear storage. It should
be noted that in contrast to the (hierarchical) computation
of the radius estimate in [14], this paper presents efficient
algorithms that compute 7 by definition, i.e., the radius es-
timate is computed independently of previously obtained
estimates of the center’s coordinates.

2 The Algorithms

In this section we present the algorithmic framework
for our algorithms. Because of space limitations we only
present the computation of the most illustrative case, the
radius parameter for the RM circular arc estimator. The
computation of other parameters and for the Theil-Sen es-
timator are simpler variations of this method.

To compute the estifpéted radius, 7, we first define

. A

= medpedrian
Intuitively #; is the radius estimate associated with a fixed
point p;. The algorithm to be presented computes #; in
(expected) O(nlogn) time for each i = 1,...,n. A stan-
dard fast selection algorithm may be applied at this stage
to compute 7 = ni?d #;. Thus, the total running time of

the algorithm will be O(n?logn).

We focus now on the computation of 7;. By definition,
this estimate corresponds to a two-dimensional RM com-
putation over all radii, r; j ¢, of circles passing through p;,
pj,and pr (j # 4, k # i,7), for a fized point p;. For j # i,
let {b; j,j # i} denote the perpendicular bisector of p; and
p;. Consider the planar line arrangement of the n —1 lines
{bi j,j # i}. Observe that the intersection of the lines b; ;
and b; ; is the center of the circle passing through p;, p;,
and p¢. Thus the O(n?) vertices of this arrangement are
essentially the centers of the circles determined by p; and
any two other points. The distance of each vertex from
p;i is the radius of the corresponding circle. Thus we have
reduced the problem to that of determining the median
distance from a fixed point to every vertex of an arrange-
ment of n — 1 lines. We use the term intersection point to
denote a vertex in this arrangement. Henceforth all radius
values are to be interpreted as being distances from p;.



To compute #; we apply the same interval contraction
scheme, presented in the randomized algorithms for the
Theil-Sen and RM line estimators (see [8], [12], and [13],
respectively). We maintain an interval [ry,, r5;], which de-
fines an annulus centered at p; that contains 7;. (The initial
interval is [0, +00].) The interval is contracted through a
series of stages. During each stage a subinterval [r},, r}]
that contains #; is constructed.

Let us describe the operations of a typical stage in
greater detail. Suppose that [rj,, 74;] is the current interval,
and that #; € [ri,,74;]. The current interval corresponds
to an annulus whose center is the point p; and whose radii
are ri, and rp;. Let A;(ry,,rs;) denote this annulus. For
each perpendicular bisector, b; j, we maintain three counts:
I;, A;, and O;, which denote the number of the bisector’s
intersection points lying inside the circle r = rj,, inside
the annulus A;(ri,,7s;), and outside the circle r = ry;,
respectively. (Counting the number of intersections per bi-
sector will be discussed in the next section.) Depending
on the relationship between [(n —2)/2], I;, and I; + A;,
we can determine whether the median radius associated
with b; ; lies inside the circle r = r;,, within the annulus
Ai(710,Thi), or outside the circle 7 = ry;. The set of bi-
sectors {b; j,j # i} is partitioned accordingly into three
subsets I, A, and O, respectively. Since we assume that #;
lies within A, it follows that |I| < [(n —1)/2] < |I]| + |A|.
A bisector is a candidate to provide the two-dimensional
RM, #;, if it lies in A. In particular, the candidate whose
median radius (i.e., median distance of its intersections to
the point p;) is of rank [(n — 1)/2] — |I| within A is the
desired candidate.

We apply essentially the same randomized interval con-
traction algorithm given in [13] for the linear RM estima-
tor (where I, ‘A, and O play the roles of L, C, and R,
respectively). We omit the details here, but the idea is as
follows. Recall that the point p; is fixed. For some suit-
ably chosen constant # < 1 (whose value will be defined
in Subsection 3.2), randomly sample O(n”) bisectors. For
each sampled bisector b; ; determine the point on this bi-
sector from the line arrangement with the median distance
from p;. This task is described in Subsection 3.2. Using
the median distances of these sampled lines, construct a
confidence interval for the desired RM radius, and derive a
contracted annulus, A;(r},,7};), with respect to this confi-
dence interval. Apply an intersection counting procedure
(described below) to determine whether the contracted an-
nulus indeed contains #;, and if so recurse on this interval.
(This will occur with high probability.) Otherwise recurse
on one of the two annuli lying on either side of the con-
tracted annulus.

The algorithm presented in [13] makes no special use of

the linearity of the RM line estimation problem, except in
three subtasks. For CAE, these subtasks are: (1) Counting
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the number of intersections of a set of lines within an an-

‘nulus, (2) randomly sampling (lines or intersection points)

from a set of lines that intersect an annulus, and (3) de-
termining the point on a line of an arrangement with the
median distance from p;. In the next section we will show
that each of these tasks can be performed in O(nlogn)
time and-O(n) space. Applying the same analysis of [13],
it follows that each stage takes O(nlogn) expected time,
and the number of stages in the expected case is O(1).
Repeating for each point p; gives the O(n?logn) time, as
claimed.

3 Building Blocks

3.1 Intersection Counting/Sampling

In this subsection we describe how to perform efficient
counting (and sampling) of line intersections in a given an-
nulus. The technique to be presented is a generalization of
the intersection/inversion counting technique used in [8],
[13], for counting/sampling line intersections in a given in-
terval." More specifically, define a collection of pseudolines
to be a collection of curves such that any pair of curves
intersects at most once. We demonstrate below that given
n pseudolines and a boeunded region, such that, (1) each
pseudoline intersects the boundary of this region a posi-
tive, even number of times, (2) the number of intersections
between a pseudoline and the boundary is bounded above
by some constant, and (3) the intersections of pseudolines
along the region’s boundary can be cyclically ordered (see
Figure 1(a)), one can compute the number of intersections
(between each pair of pseudolines) in the region in time
O(nlogn). Also, sampling O(n) intersections can be car-
ried out in a similar time bound. :

We assume that the region’s boundary is connected. If
not (as is the case with an annulus) a pseudoline segment
can be added to form a channel joining the two parts of the
boundary. For each pseudoline we determine its intersec-
tions with the boundary of the region, and break the pseu-
doline into a collection of pseudoline segments. The inter-
sections will be counted individually for each segment, and
counts for the segments from the same pseudoline will be
combined later. First sort the O(n) endpoints of the pseu-
doline segments along the boundary of the region. These
are stored in a list /. We maintain a sort of stack in which
we can insert elements only at the top, but can remove
elements from any position. Initially the stack is empty.
Process the elements of ! in the following manner. When
a pseudoline segment endpoint, a;, is encountered in I, if
this is the first time this segment has been encountered it is
pushed onto the top of the stack. Upon encountering the
other endpoint of this segment, the number of stack en-
tries on top of the element is determined and the segment
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is removed from the stack.

It is easy to see that because of the pseudoline property
and the fact that each pseudoline intersects the boundary
an even number of times, when a; is removed from the
stack, any item above a; in the stack will intersect a; ex-
actly once. Because every pseudoline intersects the bound-
ary of the region at least once, every pseudosegment’s in-
tersections will be counted.

The stack can be implemented using a modification of
any type of a balanced binary search tree, e.g., a red-black
tree (see, for example, [7] for a detailed tutorial). The tree
is modified for the purposes of counting in a straightfor-
ward manner. The underlying tree stores the elements of
the stack, at the leaf level. Also, every internal node N
contains two fields: C, a count which corresponds to the
number of leaves stored in the node’s left subtree, and I,
an increment to be added eventually to the individual (in-
tersection) counts of the leaves of the subtree whose root
is N. (This will be clarified below.)

We modify the basic operations supported by a red-black
tree (RBT) in the following manner:

Insertion: A newly encountered element, a;+;, would be
inserted into the tree as a leftmost leaf. More precisely,
the current leftmost leaf, a;, is replaced by a subtree
whose root node is red (with C = 1, I = 0), and whose
left and right children are a;4+, and a;, respectively.
Maintaining the tree requires (1) incrementing the C
values of all the internal nodes on the path from the
newly inserted red node to the root, and (2) restoring
the properties of a RBT.

Deletion: Deleting an element a; is done by splicing out
its parent node, i.e., replacing this node with the sib-
ling of the (deleted) element. This requires (1) updat-
ing the (intersection) count for the pseudoline segment
a;a; by adding I values of nodes along the path to the
root, (2) updating the C and I values of nodes along
the above path, and (3) restoring the properties of a
RBT.

Rotation: Left and right rotations are required to restore
the properties of a RBT (see [7], Chapter 14), and are
often invoked upon insertion and deletion. In addition
to changing the pointer structure of the tree we also
need to update appropriately the C and I values of
the rotated nodes.

Figure 3 illustrates insertion and deletion of a node for the
permutation list 1,5,6,2,3,1,...,3, which corresponds to
the example depicted in Figure 1(a). Each node is associ-
ated with a (C, I) list.

As the height of a RBT is O(logn), and since the over-
head for updating (C, I) is O(1) upon insertion, deletion,
and rotation, we arrive at the following.

LEMMA 3.1 Given a simple arrangement of pseudolines
and o bounded region, counting/sampling intersections
along individual pseudolines can be dome in O(nlogn)
time.

Due to space limitations we omit a discussion of the sam-
pling of intersections. In principle, though, it draws di-
rectly from the above sketched counting technique, and is
analogous to the sampling procedures described in [8], [13].
As mentioned earlier, Lemma 3.1 can be applied directly to
counting/sampling intersections in a given annulus, by con-
sidering the bounded region that is formed by cutting the
annulus along an arbitrary straight line (see Figure 1(b)).

3.2 Finding Line Medians

In this subsection we describe how to determine the
“median intersection point” on a line of the bisector ar-
rangement. Recall that there is a fixed point p;, and an
arrangement of n — 1 bisectors b; ; for each j # i. Each
intersection point between bisectors b; ; and b;; in this
arrangement is the location of the center of some circle
passing through p;, p;, and pr. The radius of this circle is
the distance from p; to this intersection point. Given a bi-
sector b; ; we wish to determine the median radius among
all n — 2 intersection points. We do this in O(n” log n)
time, for some 7 < 1, by an application of recent results in
the theory of range searching (e.g., [5], [11], [1]).

The desired median value is. determined by a binary
search. The set of circles passing through p; and p; form a
linearly ordered set, whose centers lie on the bisector b; ;.
For a given radius value r (r > dist(p;,p;)), the locus of
points ¢, for which the circle determined by p;, p;, and ¢
has radius less than r can be seen to be the symmetric dif-
ference between the two open disks of radius r that pass
through p; and p;. For a given pair of radii r, and ry;,
the locus of points ¢, for which the circle determined by
Pi, pj, and g determines a circle of radius between r;, and
Thi can be seen to be the difference of two such sets. Such
a locus can be described in terms of a constant number
of Boolean operations on circles. Thus we can count the
number of points p; lying within such a locus by applying
range searching. The type of range is shown in Figure 2.
Agarwal and Matousek [1] have shown that such queries
can be solved in O(n?) time after O(nlogn) preprocessing
and with linear space.

To determine the median we apply the same randomized
binary search presented in [13]. The only difference is that
rather than using double-wedge range queries, we use range
queries to the type of range described above. The value 8
introduced earlier is defined to be 1 —v. Thus by applying
binary search to each of n? lines, where each probe of the
binary search performs a range count, the total running



time of the median computation phase is O(n?n”logn) =
O(nlogn). Details will be presented in the full paper [15].

4 Conclusions

Efficient (randomized) algorithms for robust circular
estimation were presented in this paper. In particular,
it was shown that (non-hierarchical) Theil-Sen and re-
peated median CAEs can be computed in O(n%logn) (ex-
pected) time and O(n) space. The algorithms derived rely
on generalized techniques for intersection/inversion count-
ing/sampling and range searching. Extending the current
fitting methodology to a larger set of functions (e.g., 2-D
conic sections) would be pursued as a future research topic.

Acknowledgements: We would like to thank Michael
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ration, as well as Pankaj Agarwal for bringing to our at-
tention the important reference [1].
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Figure 1: (a) Generalized intersection / inversion
counting; (b) its applications for CAE.
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Figure 3: (a) Insertion of pseudoline 2; (b) deletion of
pseudoline 1; (c) rotations to the right and to the left.

Figure 2: The range associated with p;, A(ry,, rp;), for
a sampled bisector b; ;. -



