85

Guarding a Treasury

Svante Carlsson*

Abstract

We present ‘a preliminary investigation of problems
concerning the guarding of treasures within a simple
polygon where values are assigned to the treasures.
In particular, we consider the case of finding the
location of a guard so that the value of the visible
treasures is maximized. We obtain efficient algo-
rithms for variations of the problem where we re-
strict the placement of the guard or the location of
the treasures. We are also able to prove tight lower
bounds for some of these variations.

1 Introduction

Original art gallery problems ask questions on the
lower bounds of the number of guards needed such
that every points of the polygon is visible to at least
one guard, and where these guards should be placed
to achieve this. In 1975 Chvdtal [3] proved that
3] guards are sufficient and sometimes necessary
to guard the interior of a polygon. Related problems
with a flavour of art galleries, such as guarding the
exterior of polygons, guarding line segments in the
plane, using mobile watchmen and many more, are
nicely presented in O’Rourke’s monograph [9] and
in Shermer’s survey [11]. In this paper we deal with
a variation of the problem with treasures in an art
gallery named by Deneen and Joshi [4]. They define
a treasury to be a simple polygon containing ¢ trea-
sures and present an algorithm for computing an
approximation of the smallest set of guards needed
such that all treasures are in sight by at least one
guard. We extend their definition, by assigning a
value (a weight) to each treasure and consider the

*Division of Computer Science, Luled University of Tech-
nology, S-971 87 LULEA, Sweden.‘

Hakan Jonsson*

placement of a single guard such that the sum of
the values of the treasures visible to the guard is
maximized. In addition to placing a guard in a gen-
eral position inside the treasury, we also study the
cases where the guard is restricted to corners or to
the boundary of the treasury. The treasures are as-
sumed to be in general positions, but we also treat
the special case where they are placed at the corners
of the treasury. We present solutions to all problems
considered and a lower bound for guarding a trea-
sury from the boundary.

2 Preliminaries

A treasury is a simple polygon P bounded by n
straight line edges e;,es,...,e,, where €; and e;4;
are joined by the vertez p; of P. To each of ¢ trea-
sures positioned at sites s1,S82,...,8; in P there is
a value wy, ws, ..., w; associated. Qur guard is sup-
posed to be posted at a point in P where the sum
of the values of the treasures visible to the guard
is maximized. The boundary of P is the union of
all edges, and the interior is the area surrounded
by the boundary. We assume that P does not con-
tain holes. Let r be the number of reflex vertices,
i.e. vertices that join edges of P which forms an-
gles greater than 180 degrees inside P. We use the
algebraic tree model as our model of computation
[10], and will mainly use the frame-work of visibility
presented by Bose [1].

We say that two points p and ¢ in P are visible to
each other if the straight line segment 7q is a subset
of P. A wvisibility polygon of a point z € P contains
all points of P visible to z. This polygon can be
computed in O(n) time using the algorithm of El-
Gindy and Avis [5], a fact we will use extensively in
this paper. Visibility of treasures in a treasury can

86

Pq

P3g

Py

Figure 1: A site s; and its associated pockets (the
shaded areas). The dashed line segment Pzq; and
Peqz are windows generated by s;.

be dealt with using windows. A window of a point
z (the generator) belonging to P is an edge of the
visibility polygon of z not contained in any of the
edges of P, delimited by the two event points b (a
reflex vertex called the base) and the point g on the
boundary (the end). Windows constitutes borders
a guard have to pass when being moved in order to
loose (or gain) sight of z, since inside P only reflex
vertices might block the view (Figure 1). A maxi-
mal connected subset of P from which the generator
is not visible is called a pocket. A pocket is joined to
the visibility polygon by a window. Some care has
to be taken to avoid ambiguities due to collineari-
ties. We refer to Bose [1] for further details.

3 Guarding Treasures of a Trea-
sury

In this section we present algorithms for solving the
problem of placing a single stationary guard in a
treasury such that the value of the treasures visible
to the guard is maximized. We start by investigat-
ing the cases where the guard is restricted to stand
in the corners or on the boundary of the treasury.
We end this section by not having any restrictions
as to where in the treasury we are allowed to place
the guard. In each case we begin by assuming that
the treasures can be placed in arbitrary positions.
We then consider the special case where the trea-
sures are placed at the vertices of the treasury. In
the latter case we will assume that the number of

treasures is at most n, since two treasures with val-
ues w; and w; in the same corner can be treated as
one treasure with value w;+w;. When the treasures
are placed at the corners of the treasury we will-use
the term vertex to denote both the treasure located
at the vertex as well as the vertex itself.

The main observation used in this paper is that
the number of visible sites changes by exactly one
as a window is passed. Using the windows we parti-
tion P into regions, visibility regions, where all the
points in the region view the same treasures. Thus,
it suffice to consider only one point of each visibility
region.

3.1 A Guard Restricted to Corners

Consider the problem of placing a guard at one of
the n corners of the treasury such that the value
of the treasures visible to the guard is maximized.
One way of solving the problem is to compute the
visibility polygon, in linear-time, from each treasure
site s; and adding the value of the treasure to the
sum of values of the vertices of the visibility poly-
gon. Then, choose in linear time the vertex with
the largest accumulated sum of treasure values to
be the place to position the guard in O(n) time.
Computing ¢ visibility polygons one at a time takes
O(tn) time and O(n) space.

If the number of treasures is much larger than n
we use another approach. We compute the visibil-
ity regions formed by the windows generated by all
vertices of P in O(nrlogn +n?r) time using the al-
gorithm of Chazelle and Edelsbrunner (2] and pre-
process this subdivision of P for planar point lo-
cation as done by Kirkpatric in O(n?rlogn) time.
Now, we can locate the region containing a trea-
sure using O(logn) time. As we locate the trea-
sures we replace all treasures of a region with a rep-
resentative treasure having the accumulated value
of all the other. Traverse the collection of visibil-

ity regions while keeping track of which vertices are

visible. When we enter a region containing a trea-
sure we add the value of this treasure to the sum
of values of each vertex currently visible. The triv-
ial upper bound on the number of summations is
O(n®r), but we believe that it can be reduced fur-

ther. To preprocess the decomposition of P, to lo-
cate ¢ treasures and to traverse the regions takes
O(n?rlogn + tlog n + nr) time, i.e. this algorithm
is faster then the algorithm above if ¢ € Q(n?r).

Theorem 3.1 In a treasury containingt treasures
in arbitrary positions, a vertex v with the mazimal
value of the treasures visible from v could be found
in time O(min(tn,tlogn + n3r)) time.

Now, assume that the treasures are placed at the
corners of the treasures. In this case, we consider
the visibility graph. Nodes of the visibility graph
represents vertices of P and arcs connect vertices
that are visible to each other. Hersberger [7] has
devised an algorithm for computing the visibility
graph of P in output-sensitive time O(m) where m
is the number of mutually visible vertices. Given
this graph we can compute the sum of values of the
treasures visible to a vertex in time proportional to
the degree of the node corresponding to the vertex,
or in O(m) time for all vertices. If the number of
treasures is much less than n we use the algorithm
above that runs in O(tn) time for small values of t.

Theorem 3.2 If the treasures are placed at the
corners, a verter from where the value of the
visible treasures is mazimized can be found in
O(min(m,tn)) time.

We believe that this is close to the lower bound,
since this is close to the time it takes to count the
number of visible vertices of every vertex.

3.2 A Guard Along the Walls of a Trea-
sury

Consider the problem of placing a guard somewhere
along the wall of a treasury such that the value of
the treasures visible is maximized. Compared to
being restricted to corners, this problem might at a
first glance seem much harder since the boundary of
P contains an infinite number of points. However,
a guard being moved along the boundary views the
same treasures between two event points adjacent to
each other. At an event point the number of visible
treasures changes by exactly one. Due to this, we

87

only need to consider one point of each part of the
boundary delimited by two adjacent event points.
Trivially, we have:

Lemma 3.1 ¢ treasures generates O(ir) event
points (windows) on the boundary of a treasury P.

To compute all the event points, we use the sites
as generators one at a time.

Lemma 3.2 It is possible to compute all event
points on the boundary generated by a site s; in time

O(n).

Proof: The visibility polygon contains enough in-
formation for computing the event points as they
appear in angular order. o

Corollary 3.1 In a treasury containingt treasures
at arbitrary positions, all event points can be com-
puted in O(in) time.

Theorem 3.3 In a treasury containingt treasures
in arbitrary positions, a point on the boundary where
the total value of the treasures visible is mazimized
can be found in O(tn + Wlogt) time using O(W)
space, where W is the number of windows generated
by the treasures.

Proof: We find the place from which the value of
the visible treasures is maximized by computing
the event points, sorting them along the boundary
and then visiting them in sorted order. By Corol-
lary 3.1, we can compute the event points generated
from all treasure sites and keep them in t separate
lists containing O(r) event points each, in O(tn)
time. In each list, the event points will be sorted
in angular order along the boundary. Note that at
reflex vertices there might be many event points.
Merging ¢ sorted lists containing a total of W event
points take time O(Wlogt). We start the walk
along the boundary at a reflex vertex, where the
treasures visible can be computed at the same time
as all the event points are computed. As we pass
an event point we can determine in constant time
whether the number of visible treasures increases
or decreases. We can do this by examining how
the window of the event point is positioned relative

88

the boundary. Thus, by Lemma 3.1 we can deter-
mine which treasures are visible at all event points
" in O(W) time. o

Restrict the treasures to the corners of the trea-
sury and consider the problem of placing a guard
somewhere along the wall such that the value of the
treasures seen by the guard is maximized. We will
show how the result in Theorem 3.3 could be im-
proved in the case where the treasures are all placed
at the corners, and also provide a non-trivial lower
bound on how fast an algorithm that finds the place
on the boundary where the value of the treasures
visible is maximized can be. First, we consider a
given edge e; of P and show that the best position
on e; in order to guard as large a value as possible
could be computed in O(nlogn) time. Then we re-
turn to the problem of placing a guard somewhere
on the boundary.

Suppose that we are given an edge e; of P and
asked where on e; the value of the visible treasures
are maximized. To find this we compute the event
points on e; and then visit them in sorted order
along ¢;. From Lemma 3.7 in Bose [1] we have:

Lemma 3.3 There are O(n) end points on an edge
of P.

To compute the event points in Lemma 3.3 we use
the algorithm of Lee and Lin [8] that computes the
weak-visibility polygon from an edge of P, i.e. the
part of an polygon visible from at least one point
along the edge, in time O(nlogn) making some mi-
nor changes. We can sort the O(n) end points and
visit them in sorted order in O(nlogn) as we did
earlier in this section. This gives us:

Theorem 3.4 Given a treasury with treasures in-
cident to the vertices, the place on an given edge
where the value of the visible sites is mazimized can
be found in O(nlogn) time.

We show that the algorithm presented above is
optimal by showing a lower bound of Q(tlogt) on
the time complexity on the problem. The lower
bound is obtained by reduction to the problem of
determining whether any two members of a set of n
numbers differ from each other by less than &, which

Figure 2: A part of P showing the chimney of the
number z;.

is known to require (nlog) in the algebraic deci-
sion tree model [10, Corollary 8.1, pp. 326).

Theorem 3.5 In a treasury containing O(n) trea-
sures at the vertices, finding the point on an edge
e; where the value of the visible sites is mazimized
requires (tlogt) time.

Proof: We start the proof by constructing a polygon
Pq which we will use in the reduction. Consider a
set, X, of £ numbers {2, z,.. .,.’E_?g}, and let min
and maz be the smallest and the largest of all z;
respectively. Construct Pq in the following way:

1. Build a rectangular polygon with vertices p; =
(min—1,0),p; = (min—1,1),ps = (maz+1,1)
and py = (maz + 1,0). Call the edge P1ps the
floor of the polygon and the edge p2p3 the roof.
Let Az = maz — min.

2. For each z; cut the roof between a; = n%f”i-i —%
and d; = ;zéfl-i + -g- for some sufficiently small

gap § = |a; — d;| < €, and add 3 new edges
E?E,E}E and ¢;d; to Pq at this cut by build-
ing a chimney (a pocket of p, as shown in Fig-
ure 2). Place b; at the intersection point be-
tween the line through (z; + €,0) and d; and
the line through (z;,0) and a;. Position c; at
the intersection point between the line through
(z; — €,0) and a; and the line through (z;,0)

and d;. Choose the gap ¢ sufficiently small so
that no chimneys intersect. Place a treasure
with value 1 at b; and c;.

At the end of this construction step, Py consists of
2t + 4 vertices. If and only if there are two num-
bers z; and z; such that |z; — z;| < € the number
of treasures visible from (z;,0) will be larger than
two. Hence, if we are able to find the place of max-
imal visibility on the base we are able to solve the
problem of determining whether any two members
of a set of n numbers differ from each other by less
than e.]

We are now able to conclude that our algorithm,

based on Lee and Lin’s method is optimal if the

number of treasures is ©(n). Using this algorithm
on each edge and then in linear time selecting the
best solution yields an O(n%logn) time algorithm,
which is no better than the result of Section 3.2. We
improve this to a complexity tied to the number of
mutually visible vertices by observing that only ver-
tices visible to a generator may generate windows.
This means that the visibility graph and P together
contains all information we need in order to find all
the windows and event points.

Lemma 3.4 Given a treasury containing t trea-
sures at the vertices, all event points on the bound-
ary can be computed in O(m) time.

Proof: Computing the visibility graph using the al-
gorithm of Hersberger [7] requires O(m) time, and
by slightly modifying it we can get all visibility poly-
gons of all vertices in the same amount of time.
Given the visibility polygon of v, computing all
event points in P generated by v requires no more
than time proportional to the number of vertices in
the visibility polygon. a]

If the number of treasures is much less than » we
use the general algorithm of Section 3.2 which in
this case runs in O(tn + trlogt) time. We get the
following theorem as a consequence of Theorem 3.3:

Theorem 3.6 In a treasury containing treasures at
the vertices, it is possible to compute the point on
the boundary where the value of the treasures visible
is mazimized in O(min(m + W logt,tn + W logt))
time.

89

The lower bound of §2(tlogt) on an edge in trea-
sures containing O(n) treasures placed at the ver-
tices (Theorem 3.5) also applies to the boundary.
However, Q(m) is not an obvious lower bound on
the problem of placing a guard anywhere on the
boundary. It is not sure that we have to consider
all event points.

3.3 A Guard in a General Position in a
Treasury -

We end this section by considering the case where
the guard is allowed to be positioned anywhere in-
side the treasury. As before, the set of treasures
visible to a guard being moved changes only when a
window is passed. To place a stationary guard at an
arbitrary position within the treasury is thus equiv-
alent to finding a region R in P bounded by win-
dows and edges of the polygon such that the value
of the treasures visible in R is maximal. Given n
line segments in the plane, it is possible to com-
pute the arrangement of these line segments in time
O(nlog n+k), where k is the number of intersections
[2]. Corollary 3.1 states that the O(¢r) windows can
be computed in O(tn) time. Given the windows, we
can use the algorithm in [2] to compute the parti-
tion of P into visibility regions induced by the win-
dows. O(tr) line segments in general positions can
form O(t2r?) intersections. This is not the case if
we consider windows in a treasury. In a treasury
the O(tr) windows will form O(#?r) intersections [6]
which, since the set of intersections can be viewed
as a planar graph, gives us:

Lemma 3.5 A treasury can be partition into
O(t?r) visibility regions.

Computing the visibility regions using [2] takes
O(trlogtr + k) where k is the number of intersec-
tions. Within a region, the same set of treasures are
visible from all points. As we compute the windows,
we can compute the treasures that are visible from
a reflex vertex without affecting the upper bound.
By traversing the arrangement of regions in a depth-
first fashion we can find the region that guards trea-
sures of the largest value in O(tn+trlogir+k) time.

920

Theorem 3.7 Finding a point inside a treasury
where the total value of the visible treasures is maz-
imized can be done in O(tn + WlogW + k) time.

Consider the problem of placing a guard some-
where inside a treasury in order to guard treasures
placed at the corners. We can use this restriction
to obtain a marginal speed-up. By Lemma 3.1 we
know that a treasury with one treasure at each ver-
tex contains O(nr) windows which can be computed
in O(m) time (Lemma 3.4). If the number of trea-
sures is much less than n we use the main algorithm
of Section 3.3 which runs in O(tn+trlogtr+k) time,
where k is the number of visibility regions induced
by the windows of the ¢ treasures. Using these facts
we can tune Theorem 3.7 into the following:

Theorem 3.8 In a treasury where treasures are
placed at the vertices, the verter with mazimum
value of the treasures visible can be found in time
O(min(m + nrlogn + k,tn + WlogW + k)).

4 Conclusions and Discussion

The intention of this paper was to investigate the
principles of visibility within a simple polygon. In
particular, we study the problem of guarding a finite
set of sites, called treasures, whose placement may
or may not be restricted by certain rules. We have
presented algorithms for computing the placement
of a stationary guard in a simple polygon containing
treasures so that the value of the treasures visible
to the guard is maximized. This is a new type of
problem and we can see several extensions of it, for
example using multiple guards or watchmen within
the treasury. We would also like to obtain lower
bounds for the problems studied here.

References

[1] P.K. Bose. Visibility in simple polygons. Mas-
ter’s thesis, University of Waterloo, 1991.

[2] B. Chazelle and H. Edelsbrunner. An optimal
algorithm for intersecting line segments in the
plane. J. ACM, 39(1):1-54, 1992.

[3] V. Chvatal. A combinatorial theorem in plane
geometry. J. Combinatorial Theory Ser. B,
13(2):395-398, 1975.

[4] L. L. Deneen and S. Joshi. Treasures in an
art gallery. In Proceedings of the 4th Canadian
Conference on Computational Geometry, pages
17-22, 1992.

[5] H. ElGindy and D. Avis. A linear algorithm for
computing the visibility polygon from a point.
J. Algorithms, 2:186-197, 1981.

[6] J. L. Guibas, R. Motwani, and P. Raghavan.
The robot location problem in two dimensions.
In Proceedings of the 3rd Symposium on Dis-
crete Algorithms, pages 259-268, 1992.

[7] J. Hersberger. An optimal visibility graph al-
gorithm for triangulated simple polygons. Al-
gorithmica, 4:141-155, 1989.

[8] D.T. Lee and A.K. Lin. Computing the visi-
bility polygon from an edge. Computer Vision,
Graphics and Image Processing, 34:1-19, 1986.

[9] J. O’Rourke. Art Gallery Theorems and Algo-
rithms. Oxford univ. press, 1987. ISBN 0-19-
503965-3.

[10] F. P. Preparata and M. I. Shamos. Compu-
tational Geometry, An Introduction. Springer-
Verlag, 1985. ISBN 3-540-96131-3.

[11] T. Shermer. Recent results in art galleries.
In Proceedings of the IEEE, pages 1384-1399,
September 1992. -

