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Abstract

An O(n*loglogn) algorithm for shortest watchman tour (SWT) problem for simple polygons, |
given a starting point on the boundary of the polygon is proposed in Chin and Ntafos [CN1]. The
problem of finding the SWT in general polygons when the starting point is not specified is open. We
develop an O(n'?) algorithm for the SWT problem in weak visibility polygoné, with no assumption
on the starting point.

1 Introduction

The watchman tour problem was introduced by Chin and Ntafos [CN2]. Earlier, many researchers
considered the problem of positioning stationary watchmen in a gallery so that every point in the gallery
can be seen by atleast one watchman. The problem of finding the minimum number of watchmen needed
is equivalent to that of covering the polygon with minimum number of star-shaped components.

Chin and Ntafos [CN2] considered the problem of finding a watchman tour, which is a tour within
a polygon with the property that every point in the polygon is visible from atleast one point along
the tour . They present O(n) and O(nlogn) algorithms to find a shortest watchman route in a simple
rectilinear monotone and simple rectilinear polygon, respectively. Here n is the number of vertices in
the polygon. Chin and Ntafos [CN1] developed an O(n*loglogn) algorithm to find a shortest watchman
route in a simple polygon given a starting point on its boundary. An interesting incremental algorithm
for the SWT problem gas recently been proposed [HIT)].

We present a polynomial time algorithm for finding the shortest watchman tour, with no assumption
on the starting point , for a class of polygons called weak visibility polygons .

Consider a simple polygon P. Two points in P are said to be visible if the line segment joining them
lies totally inside P. A point p is said to be weakly visible from an edge st if there is a point z in the
interior of st such that p and z are visible. If every point in P is weakly visible from st then P is called
a weak visibility polygon. If a polygon P is weakly visible from an edge, then that edge is called a weak
visibility edge. Pal [SP90] presents characterizations of weak visibility polygons, and based on them,
an algorithm for recognizing weak visibility polygons with running time proportional to the size of the
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visibility graph of the input polygon. Here, visibility graph is the graph with the vertices of the polygon
as the vertex set, and two vertices are adjacent if they are visible from each other in the polygon.

Assume that the simple polygon P is given as a clockwise sequence of vertices vy, vs, ...v, with their
z and y coordinates. U;v;1; are the edges. The direction of edge %;7;5 is assumed to be from v; to v;4;
. v; is said to be the predecessor of v;;; , denoted by pred(v;y; ) and v;4; is said to be the successor
of v; denoted by succ(v; ). It is assumed that no three consecutive vertices are collinear. Denote the
boundary of P by bd(P), a weak visibility edge by WV E and the shortest watchman tour by SWT.
Assume that a WV E of P is given and that P is aligned with the WV E along the z-axis.

2 Properties of SWT and related results.

In what follows we develop through a sequence of definitions and propositions, the properties satisfied
by candidate tours which include the SWT. These propositions characterize the corners or turning
points and the segments of such tours. We suppress the proofs in this version.

Visibility polygon of a vertex v is the portion of the given polygon P , denoted V P(v), such
that v is visible to all points in V P(v). The boundary of V P(v) consists of segments through the
interior of P, alternating with chains of boundary segments of P . The segménts through the interior
of P, if extended through the interior of the polygon, will intersect at v. V P(v) has atleast one point
on the WV E | since every vertex v is visible from the WV E . Adjacent segments of a vertex are
the two segments on the bd(P) meeting at the vertex. A chord is a segment connecting two points on
bd(P) through the interior of P. Supporting Chords of a vertex v, are the extensions of the adjacent
segments of v , away from it through the interior of P until they meet the boundary of the polygon.
In some cases, one or more supporting chords may not exist, in which case, they are assumed to have
zero length. Supporting Chains of a vertex v are the bounding chains of the visibility polygon of v,
starting from v; and v; where v;v and vv; are the adjacent segments of v. The supporting chains can
contain the boundary edges of the polygon P. They necessarily include the supporting chords of v.

Proposition 2.1 A supporting chain of any vertez v can intersect a segment 9703 lying entirely within
the interior of P, in atmost one point.

Directions of edges and segments of supporting chains: To each edge on bd(P), we can
assign a direction as described before . Each supporting chord is assigned a direction identical to that of
the adjacent segment, which when extended, gives the supporting chord. Each segment in a supporting
chain C has direction identical to that of the adjacent segment from which C starts.

Inner region of a chord is the region in P to the right, while travelling along its assigned direction.
Analogously,the outer region is the region to the left. Inner region of a chain of segments is the
intersection of the inner regions of all the segments of the chain. Quter region of a chain is the region
in P other than the inner region. It can be seen that the visibility polygon of a vertex is the intersection
of the inner regions of supporting chains of the vertex and the boundary of the polygon. A chord s of

P is said to cover a chord t if ¢ lies entirely in the outer region of s. r-supporting chord of a vertex v
above the WV E is that supporting chord of v whose direction is towards v and l-supporting chord is
one whose direction is away from v. For a vertex v below the WV E , the r and ! supporting chords are
those supporting chords whose directions are away from v and towards v, respectively. Two supporting

chords are said to be of the same kind if both are l-supporting or r-supporting. Two segments are said
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to be of the same kind if they are parts of supporting chords of the same kind. They are said to be of
the opposite kind, otherwise. The set of l-extreme chords is the subset of l-supporting chords which
are not covered by any other l-supporting chord. Similarly, the set of r-extreme chords is the subset
of r-supporting chords which are not covered by any other r-supporting chord.

Proposition 2.2 In a weak visibility polygon, the cover relation is asymmetric and transitive for
supporting chords of the same kind . It means that if an I supporting chord s covers an l- supporting
chord t, t cannot cover s, and hence, s should be in the inner region of t. Also, if s covers t and t covers
v, then s should cover v. Similar results hold for r- supporting chords.

If the outer regions of two eztreme chords of the same kind intersect, then either one of them covers the
other or the two chords intersect.

Proposition 2.3 The entire polygon P is visible from a continuous tour in P iff all the convez vertices
of P are visible from the tour.

The eztreme chords cover all other chords of the supporting chains of every convez vertez.

All the convez vertices and hence the whole polygon is visible to a watchman tour visiting the visibility
polygons of vertices whose supporting chains contain at least one eztreme chord.

A corner of a tour is defined to be a point on the tour at which the tour changes direction. We
label the corners of a tour in increasing order in clockwise direction. A corner of a tour is said to be
convex if the angle swept by rotating the segment vv; to the segment vv;, about v in a counterclockwise
direction is less than 180 degrees. Here v; and vj(i < j) are the corners preceding and succeeding v
in the tour. It is said to be reflex, otherwise. A tour is said to reflect at a point P on a supporting
chord s if p is on the chord and both corners of the tour adjacent to p are in the outer region of s. The
segments of the l-extreme and r-extreme chords on which a SWT can reflect are termed l-reflecting,
and r-reflecting segments, respectively.

Proposition 2.4 Each convez corner of the SWT is a point of reflection on a supporting chain or a
point on the boundary of the polygon, and any reflex corner of the tour is a point on the boundary of
the polygon.

Proposition 2.5 A SWT reflecting on a supporting chord should lie entirely in the outer region of
the chord. It cannot touch or intersect the chord at any point other than the point of reflection. (The
SWT can graze along a supporting chord).

A SWT can reflect only on eztreme chords.

The SWT lies éntirely in the intersection R of outer regions of all eztreme chords on which it reﬂects
and the reflecting segments are on the boundary of this region.

An essential chord is an extreme chord whose outer region contains portions of each of the visibility
polygons having one or more extreme chords on their boundaries. Call the edges on the boundary of R
containing the reflecting segments as essential segments.

Proposition 2.6 All points of reflection of the SWT are on essential chords. All essential chords of
the same kind, as an essential chord s on which the SWT reflects, should intersect s.

Proposition 2.7 The l-essential and r-essential segments( containing l-reflecting, and r-reflecting seg-
ments, respectively) form two distinct convez chains on the boundary of R.

The corners of the SWT which are points of reflection on l-reflecting and r-reflecting segments form
two continuous convez chains.
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3 The Algorithm

3.1 Finding essential segments

The directions of the supporting chords can be assigned by a clockwise scan around the boundary of the
polygon. The extreme chords can be determined by checking pairs of supporting chords and eliminating
one of them if it is covered by the other. Essential chords can be found by ¢hecking for each extreme
chord whether its outer region contains portions of visibility polygons corresponding to all other extreme
chords. This can be done by checking whether the extreme chord is in the inner region of or intersects
both the supporting chains of the visibility polygons corresponding to the extreme chords. If so, then
it means that the outer region of the extreme chord contains some portion of the visibility polygon and
that the extreme chord is essential.

3.2 Finding Reflecting Segments

Let L and R be the sets of l-essential and r-essential chords. We traverse the SWT in an anticlockwise
direction. Let fi,e; .denote the first and last l-extreme chords on which the SWT reflects, and let f,
and e, be similarly the first and last r-extreme chords on which the SWT reflects.

3.2.1 Selecting f; and ¢

Due to intersections with other supporting chords, the chords in L are divided into O(n?) segments(each
supporting chain can intersect a chord in at most one point, by Proposition 2.1). It is required to select
the f; and ¢; from these. . )

Consider the intersections among the l-extreme chords alone. Each l-extreme chord can intersect all
the others. We traverse along these chords in their assigned direction.The segments of all the chords
until the first intersection are candidates for f;. Subsequently, at each intersection, all except one of
the intersecting extreme chords can be ignored (i.e., the rest of the segments in those chords cannot
be candidates for f;), since a tour reflecting first on any segment on these chords will fail to visit the
visibility polygon corresponding to atleast one of the extreme chords intersecting at the point. Thus,
there can be a maximum of 2m + 1 segments remaining where m is the number of chords in L, where
m < n. Due to intersections with other supporting chords, each of these segments may be split into
O(n) segments (each supporting chain can intersect the segment in at most one point). Each of these
is a candidate for f; and hence, there are O(n?) candidates for f; where n is the number of vertices of
the polygon .

Similarly, the first segments while travelling along the l-extreme chords against their assigned di-
rection are candidates for ¢;. At each intersection, the subsequent segments of all except one l-extreme
chords intersecting at that point can be ignored since, if the SWT reflects last on one of these segments,
the visibility polygons corresponding to the other l-extreme chords at the intersection cannot be visited.
There are O(n?) candidates for ¢; by an argument similar to that for l-extreme chords.

The case of f, and e, is similar.

3.3 Finding Reflecting Chains

The SWT reflects either on r-essential chords alone, or on l-essential chords alone, or on both r and 1
essential chords, depending on the input polygon. Let Fi, F, and Ej, E, be the extreme chords containing
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i, fr and ey, e, respectively. If the set {f}, e, f., e, } corresponds to a shortest watchman tour, it should
be the case that the outer regions of F, Ej, F, and E, intersect in a non-empty region, since the SWT
lies in the outer region of all the extreme chords on which it reflects. Since the outer regions of F; and
E intersect, F; should intersect E; since none of them covers the other,by Proposition 2.3. Similar is the
case with F, andE,. The SWT has to reflect on or intersect all extreme chords lintersecting F; and E;
such that f; and ¢; are in the outer region of I, and I passes through the intersection of the outer regions
of Fi and E, since otherwise, the watchman tour cannot visit the visibility polygon corresponding to L
Call these chords the candidate reflecting chords for (fi, €;). Similar chords in the case of F, and E, also
have to be intersected or reflected upon by the watchman tour. Define the included angle between z and
y to be the angle formed by rotating a line segment from z to y in an anti-clockwise direction denoted
Includedangle(z,y). Let 6 be the included angle between F} and E;. Let C = < li,1l3,13,... > be the
ordered set of reflecting chords, for (fi,e;) such that z,,2,,...,z,, their corresponding intersections
with Fj are in the order in which they appear while travelling along Fj in its assigned direction. Let
ai,ay,...,a, be the included angles made by the candidate reflecting chords ly,1,...,1, respectively
with F} .

Proposition 3.1 (a) The SWT should reflect on R=< y1,¥2,...,¥x > the mazimum sized subset of
< h,la,...,l, > such that:

1. <¥1,92,...,Yk > appears in the same relative order in R as in C,
2. Includedangle(Fi, 1) < ... Includedangle( Fi,yi) < Includedangle( Fy, E;).

3. There does not ezist a chordyy,, € C andyy € R such thaty, < ypm, and Includedangle(Fi, ym) <
Includedangle(Fy, y,) for any y, € R.

In other words, for any y; € R, there does not ezist yp € R, k < j and Includedangle(Fi,yi) >
Includedangle(F, y;).

(b) The set R is unique and can be constructed by moving down F; along its direction and, when an
intersection z; with an l; € C is encountered, removing all candidate reflecting chords I, intersecting Fy
before z; such that Includedangle(Fi,yr) > Includedangle(F;,y;).

(c) All chords in C, but not in R are intersected by any path reflecting on the chords of R..

3.4 Checking Validity of Reflecting Chains

A set of reflecting segments is valid if there exists a tour reflecting on these segments and visiting the
visibility polygons corresponding to all the extreme chords.

Proposition 3.2 A set S of reflecting segments is valid

only if each of the reflecting segment is in the outer region of the eztreme chord corresponding to each
of the other reflecting segments, and, if so,

if and only if for each vertez v such that atleast one of its supporting chords is an eztreme segment
containing no reflecting segment, there ezist atleast one of the reflecting segments of s to the inner
regions of each of the supporting chains of v .
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3.5 Finding the shortest length tour reﬂecting on prescribed segments

The reflecting chain(s), along with the boundary of the polygon form a polygon which consists of a
chain of one or more simple polygons, with each simple polygon connected to the next by a single point.
The reflecting segments are on the boundary of the terminal polygons. If the chain has more than one
simple polygon, the SWT has to pass through the points connecting the polygons , and it is sufficient
to find the minimum length tour reflecting on the prescribed segments of the terminal polygons, passing
through the interconnecting points to the next polygon in the chain, and finally connect the tours of
the terminal polygons by the shortest tour through the interconnecting points of the chain. We use
an O(nloglogn) algorithm of [CN2] which first triangulates the polygon, and considering the reflecting
segments as 'mirrors’, 'unfolds’ the polygon and finds the shortest path connecting one of the reflecting
segments to its 'reflected image’.

4 Proof of Correctness

Proposition 4.1 The algorithm - shortest watchman tour computes in polynomuzl time, the SWT in
a given weak visibility polygon .

Proof

The reflecting segments form one or two continuous, convex chains accord.mg to Proposition 2.7.
The method in Section 3.2 selects all the possible first and last segments for these chains. Proposition
3.1 proves the method for finding the unique convex chains between the selected corner segments of the
same type. By Proposition 2.3, it is sufficient for the watchman tour to_visit the visibility polygons
corresponding to the extreme chords. Hence, by Proposition 3.2 the algorithm computes all possible
watchman tours for the polygon, and hence, the Shortest Watchman Tour.

Let n be the number of convex vertices. Finding extreme chords can be done in O(n?) time (each
pair of supporting chords may have to be considered to check whether one of them is covered by the
other and there are O(n?) of them). Since there are O(n?) candidates for fi,e;, f, and e,, there are
O(n*) possible (fi, e;) and (f,, e,) pairs, and O(n®) quadruples (fi, e, f.,e,). Checking for valid chains
take O(n?) time and finding the minimum length touching the prescribed reflecting segments take
O(nloglogn) time. Thus, the overall complexity of the algorithm is O(n!°).
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