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On Vertical Decomposition of Arrangements of Hyperplanes in Four
Dimensions *

Leonidas J. Guibas!

Abstract

We show that, for any collection H of n hyper-
planes in ®%, the combinatorial complexity of the
vertical decomposition of the arrangement A(H) of
H is O(n*logn). The proof relies on properties of
superimposed convex subdivisions of 3-space, and
we also derive some other results concerning them.

1 Introduction

Let H be a collection of n hyperplanes in ®*. The
vertical decomposition V(H) of the arrangement
A(H) of H is defined in the following recursive
manner. Denote the coordinates by z,y,z and w.
For each cell C of A(H) and each 2-face g on 8C,
erect a 3-D vertical “wall” from g up or down (in
the w-direction) until it meets the boundary of C
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again. The collection of these walls decomposes C
into vertical prisms, each bounded by two hyper-
planes of H, one on its top and one on its bottom
(sometimes, when C is unbounded, by just one hy-
perplane), and by some of the vertical walls. In
the next stage we project each such prism onto the
zyz-hyperplane, obtaining a 3-D convex polyhe-
dron P, which we vertically decompose in an anal-
ogous manner. That is, we erect vertical walls (in
the z-direction) from each edge of P and extend
them until they meet the boundary of P again.
These walls decompose P into vertical prisms, each
bounded by two facets of P on the top and the
bottom sides (or just one if P is unbounded) and
by some vertical walls. We next project each such
prism onto the zy-plane, obtaining a convex poly-
gon @, which we now proceed to vertically decom-
pose in a similar manner, erecting vertical segments
(in the y-direction) from each vertex of Q till they
meet the boundary of @ again. We now complete
the decomposition of P by erecting z-vertical walls
within P from each of the y-vertical segments in the
decomposition of each of the resulting polygons Q.
Finally we complete the decomposition of each cell
C of A(H) by erecting w-vertical walls from each
newly created feature on each prism of C. Re-
peating this procedure over all cells C of A(H), we
obtain the desired vertical decomposition V(H) of
the arrangement.
We prove the following:

Theorem 1.1 The number of cells in the vertical
decomposition of an arrangement of n hyperplanes
in four dimensions is O(n*logn).

The definition of vertical decomposition can be
extended to higher dimensions in an obvious man-
ner. In fact, it can be extended to arrangements
of algebraic surfaces in ®?¢ of some small bounded
degree, as described in detail in [3]. The output
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of the decomposition are cells with “constant de-
scription complexity”—in the case of hyperplanes,
each is a convex polyhedron with at most 2d facets,
with two facets obtained at each recursive step. In
the case of general algebraic surfaces the structure
of cells is somewhat more involved, but each cell is
still bounded by at most 2d surfaces of low bounded
degree, and thus has also constant description com-
plexity.

The problem at hand is to obtain sharp bounds
on the number of cells in the vertical decomposi-
tion. It is shown in [3] that, in the general alge-
braic case, the number of cells is O(n?¢-38(n)),
where B(n) is a slowly growing function of n, de-
pending also on d and on the degree of the given
surfaces. In three dimensions this yields a nearly
cubic bound on the size of the vertical decomposi-
tion (in the general case); for planes, a simpler ar-
gument gives a tight bound of ©(n3). Thus the first
interesting case is d = 4, where the above bound
is roughly O(n%) (also for hyperplanes), whereas
the complexity of the arrangement, without verti-
cal decomposition, is only O(n*).

Theorem 1.1 shows that the size of the vertical
decomposition, for hyperplanes in 4-space, is only
O(n*logn). This constitutes the first step towards
obtaining a similar bound for general surfaces, and
extending these bounds to higher dimensions.

The main motivation for studying vertical de-
compositions in arrangements of surfaces is in their
applications to range searching, point location and
many related problems; see [3] for some of these
applications. We note that the exact shape of the
cells in the decomposition is irrelevant for these ap-
plications, as long as each cell has constant descrip-
tion complexity. Thus for arrangements of hyper-
planes one can instead triangulate the arrangement
into simplices in a standard manner, so that the
number of simplices is only O(n?) [4]. Thus these
applications, in the case of hyperplanes, have no
real need for vertical decomposition. On the other
hand, in the general case of algebraic surfaces the
vertical decomposition seems to be the only known
general decomposition scheme, so deriving sharper
bounds on its complexity is an important problem
that merits careful study; our analysis for hyper-
planes can be seen as a preliminary step in this
direction.

A main portion of the proof is based on an anal-

ysis of the overlay of convex subdivisions in 3-
dimensional space. We establish properties of such
superimposed subdivisions, which may be of inde-
pendent interest. We also prove some other prop-
erties of such subdivisions, which are not needed
for the vertical decomposition result.

2 A Reduction to a
3-Dimensional Problem

Let H be a collection of n hyperplanes in 4-space,
which we assume to be in general position. This
involves no real loss of generality, because one can
always perturb slightly the given hyperplanes so as
to put them in general position, without decreasing
the number of cells in the decomposition.

The heart of the proof of Theorem 1.1 is the
following lemma:

Lemma 2.1 Let C be a cell of the arrangement
A(H) with a total of N¢ faces (of all dimensions).
Then the complezity of the vertical decoposition of
C is O(NZ).

Assuming this lemma, Theorem 1.1 follows from
a result of [1] on the sum of squares of cell complex-
ities in arrangements of hyperplanes, which states
that, in four dimensions, one has

Z NZ = O(n*logn)
c

‘where the sum extends over all cells of A(H).

To prove the lemma, let C be a cell of the ar-
rangement A(H), and assume, for the sake of clar-
ity of exposition, that C is bounded (for unbounded
cells the analysis is quite similar). Let us divide the
boundary of C into the upper and lower portions,
and let R (resp. B) denote the projection of the up-
per (resp. lower) portion into the zyz-hyperplane.
We can regard R and B as convex subdivisions in
3-space which we refer to as the red (resp. blue)
subdivision®.

1Actually these are not convex subdivisions of the whole
3-space, but rather of the projection of C. However, the
complement of the projection of C' can be partitioned into
convex cells whose total complexity does not exceed that of
C, and thus R and B can be completed to convex subdivi-
sions of the whole space. Or, alternatively, one can check
that the restriction to the projection of C does not make a
difference in the foregoing analysis.



Since H is in general position, R and B are sim-
ple decompositions. Let us remark that one cannot
obtain all subdivisions of 3-space in this manner;
as shown in [2], R and B must be power diagrams
in 3-space.

We note that each feature (cell, face, edge or ver-
tex) of R stands in a 1-1 correspondence with some
feature (facet, 2-face, edge or vertex) of the top
part of dC, and similarly for B and the bottom part
of 0C. Let N, Ng denote the total number of fea-
tures of R, B, respectively. Thus Nz + Ng < 2Ng,
where N¢ is the total number of faces bounding C
(the factor 2 comes from the fact that features on
the silhouette of C appear both in the top part and
in the bottom part of 8C).

The first step of the vertical decomposition of C
is equivalent to the overlay of R and B to form one
convex subdivision 7 of 3-space. Each new fea-
ture of the decomposition 7" corresponds to some
intersection between a vertical wall erected up-
wards from the bottom part of dC and another
wall erected downwards from the top part of 8C.
The remaining steps in the vertical decomposition
of the (4-dimensional) cell C correspond to verti-
cally decomposing each cell in the 3-dimensional
subdivision 7.

Hence it suffices to establish the following
lemma, whose proof is postponed to the following
section:

Lemma 2.2 Let R,B be simple convez subdivi-
sions of 3-space with Nr, Ng faces, respectively.
Then the complezity of the vertical decomposition
of the subdivision T arising by overlaying R and B
is O((Nr + Ng)?).

Lemma 2.2 clearly implies Lemma 2.1, and thus
completes the proof of Theorem 1.1.

3 Properties of Convex Subdivi-
sions in 3-Space

We begin with the Proof of Lemma 2.2.

Let P be one of the cells in the overlayed de-
composition 7. The vertical decomposition of P
can be obtained by projecting the top part and
the bottom part of 9P (relative to the z-direction)
onto the zy-plane, and by overlaying these two con-
vex subdivisions—every new vertex in the super-
imposed map, M, corresponds to an intersection
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between two vertical walls, one coming upwards
from an edge on the bottom part of P, and one
coming downwards from an edge on the top part
of OP. This observation, together with Euler’s for-
mula for planar maps, imply that the complexity
of the vertical decomposition of P is proportional
to the number of faces of M (here and in the re-
mainder of this proof, “face” means “2-dimensional
face”). Note that we can ignore the last vertical
decomposition step, namely that of planar vertical
decomposition of each face of M, because this step
increases the overall complexity of the decomposi-
tion only by a constant factor.

For the clarity of exposition, assume that P is
a bounded polytope. Note that each face f of M
is the intersection of the zy-projections of a face
f* on the top part of 0P and of a face f~ on the
bottom part of dP. Since P is a cell in 7, each
of f*¥, f~ is either a portion of a red face of R
or a portion of a blue face of B. Our goal is to
charge each face f of M (or each vertically visible
pair (f*, f~) of faces of P, which is equivalent) to
a pair of features, each being a feature of either R
or B, so that each such pair will be charged only a
constant number of times (over the entire collection
of cells P).

Suppose first that f* is a portion of a red face
7 and f~ is a portion of a blue face b (the blue-red
case is symmetric). There is a unique red cell R
such that 7 lies on the top part of its boundary,
and a unique blue cell B such that b lies on the
bottom part of its boundary. Then both f* and
f~ lie in the intersection R N B, which is thus the
cell P. In other words, we can charge the pair
(f*, f7) to the pair (r,b) of faces, and the above
argument shows that this charge is unique. Thus
the number of pairs of this kind is O(Nz N5).

Next consider the case where both f+ and f~ are
portions of two respective red faces r+, r—, neces-
sarily appearing along the top and bottom parts of
the boundary of some red cell R (the case of blue
faces is fully symmetric). In this case we cannot
charge (f*, f~) to (r+,7~) as above, because R
may be split into several subcells by blue cells, and
many of them might contain vertically visible pairs
of appropriate portions of 7+ and r~, so the charge
need not necessarily be unique.

Let r be the intersection of the zy-projections
of 7+ and of r=. Let B be the blue cell whose
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intersection with R is P. If P = R then we can
charge (f*, f~) to the pair (r*,77) as above in a
unique manner (there will be O(N3) such charges),
so suppose that P is a proper subcell of R. Note
that ft = 7* N B, f~ = r~ N B. Let q be the
intersection of the zy-projection of B with r. If
g contains the projection of some vertex v of B,
then we charge the pair (f¥, f~) to the pair (v, R),
say, and observe that this pair is charged only a
constant number of times, because, given v and
R, there is a unique pair of red faces of R that
the vertical line through v intersects, and (v, R)
will be charged only by this pair interacting with
the few blue cells incident to ». Similarly, if q is
intersected by the projecton of an edge § of the
cell B, then either this edge has an endpoint that
also projects into ¢, in which case we charge as
above, or else 8 must cross some edge of r, which
is the projection of either an edge of r* or of an
edge of r~. Suppose, with no loss of generality,
that f crosses the projection of an edge p of rt.
Then we charge (f*, f~) to the pair (8,p), and
again observe that such a pair will be charged only
a constant number of times, because, given 8 and
p, there is a unique vertical line passing through
both B and p, and this line uniquely determines
the other red face r~. Thus charges to (3, p) can
be made only by pairs (r+,77) and cells B such
that 7% is incident to p and g is incident to B,
and there is clearly only a constant number of such
possible charges. Allowing for symmetric cases as
well, we conclude that the total number of pairs
(f*, f~) accounted for so far is O((Nr + N5)?).

The remaining case is thus when ¢ does not con-
tain the projection of any vertex or edge of B. In
this case, assuming B is bounded, r is fully con-
tained in the projection of one top face and of one
bottom face of B; let us denote these faces by b+,
b~, respectively. Let D denote the vertical cylin-
der whose zy-projection is r and which is bounded
by r* on its top side and by 7~ on its bottom
side. The face b* intersects D in a convex polygon
whose zy-projection, s*, is bounded by some por-
tion of r and by at most two straight segments
cutting across r (these are the projections of the
segments b* N r* and b+ N r~; we assume that ei-
ther at least one such segment exists, or that s
is empty, for otherwise st = r, in which case b+
makes f+ and f~ vertically invisible within P, con-

Figure 1: The final case of charging for a pair of
vertically visible red faces

trary to assumption). Similarly, b~ intersects D
in another convex polygon whose projection, s,
is also bounded by some portion of dr and by at
most two other straight segments cutting across r
(namely the projections of the segments b~ N rt
and b~ Nr~; again at least one such segment must
exist unless s~ is empty). The face f must be dis-
joint from both s* and s~, and adjacent to both
of them if they are both nonempty. It easily fol-
lows that, in all possible cases, f must extend all
the way to the boundary of r. See Figure 1 for an
illustration of this configuration.

Let w be a point on 8f N dr which lies on one
of these crossing segments, say the projection of
b* N rt. Then w is also the projection of some
point lying on an edge p of either 7+ or 7~. If p is
an edge of 7+ then p and b* intersect (at a point
projecting to w), and we can charge (f*, f~) to the
pair (p,b*), arguing as above that such a pair can
be charged only a constant number of times. If p
is an edge of r~, and v is the point on p projecting
to w, then, as we walk along p in the superimposed
subdivision 7, the face directly above us changes
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Figure 2: Charging to a breakpoint of the envelope

at.v from 7% to b*; see Figure 2. (If there are no
crossing segments, that is if both s* and s~ are
empty, take w to be a vertex of 7 which is either
the projection of a vertex vt of r*, or the pro-
jection of a vertex v~ of r~, or the intersection of
the projections of an edge p* of 7+ and an edge
p~ of r=. We leave it to the reader to verify that
we can charge (f*, f~) in each of these three cases
respectively to v*, to v~, or to (pt,p7).)

Let o be the vertical 2-D semi-infinite slab hav-
ing p as its bottom edge, and let v denote the lower
envelope of the restricted 2-D arrangement 7 N o.
The analysis in the preceding paragraph suggests
that we charge (f*, f~) to the ‘breakpoint’ of ¥ di-
rectly above v. Indeed, this breakpoint, defined by
the three features p, r*, b, idenitifies the blue cell
B and the two red faces r+, r~, up to a constant
number of possibilities. Note that ¢ is the point-
wise minimum of the two subenvelopes ¥, 15, de-
fined as the lower envelopes of the two respective
arrangements RNo, BNo. It easily follows that the
number of breakpoints along v is proportional to
the sum of the number of breakpoints along ¥z and
along v5—if one merges the lists of breakpoints of
these subenvelopes, sorted in their order along p,
then there can be at most one new breakpoint of
1 between each pair of adjacent breakpoints in the
merged list. The numbers of breakpoints of %,
¥ are clearly bounded by Nx, Np, respectively.
Applying this argument to all symmetric cases (ob-
tained by interchanging top and bottom sides, red
and blue, etc.), we conclude that the total number
of vertically visible face pairs (f*, f~) of the last
kind, and thus also the overall number of vertically

131

visible face pairs in 7, is O((Ng + Ng)?). This
finishes the proof of Lemma 2.2 and thus also of
Lemma 2.1 and Theorem 1.1. O

Recall that the first step of the vertical decom-
position of a 4-dimensional arrangement cell cor-
responds to overlaying two convex subdivisions in
3-space. The complexity of the overlayed subdivi-
sion (before the second decomposition step) can be
trivially estimated by NxNg, where Nz, Ng are
the total numbers of faces in the subdivisions. It
turns out that one can derive a somewhat refined
bound:

Theorem 3.1 Let R and B be two simple con-
ver subdivisions of 3-space, so that R has np
cells and a total of Nr faces, and B has ng cells
and a total of N faces. Then the total num-
ber of faces in the superimposed decomposition is
Nr 4+ N + O(n‘)zns).

Proof: If a face of R lies fully within a cell of B,
then it contributes just one to the final face count,
and similarly for faces of B. Suppose r is a red
face that intersects a blue cell B but does not lie
completely inside it.” Then r and AB intersect, so
either an edge of r crosses a face of @B, or an edge
of OB crosses 7. In either case, we charge the pair
(r, B) to the resulting vertex. Clearly, no vertex is
charged more than a constant number of times, so
it suffices to bound the number of vertices of these
types. Consider, for example, the case of a vertex v
formed by intersecting an edge p of r with a face b
of B. Since R is simple, p is incident to just three
faces of R (one of which is R). These faces intersect
b in a triple of segments incident to v. By slightly
rotating the coordinate axes, as necessary, we can
assume that neither p nor any of these segments is
horizontal, and we thus may assume, with no loss
of generality, that two of these segments increase
in z as we traverse them away from v. Let r; and
72 be the two red faces that form these ‘ascending’
segments. Then b, r; and 7, meet at v and form at
its neighborhood a cone with v as an apex, so that
v is the lowest point on the cone. In other words,
in the superimposed decomposition v is the lowest
vertex of some cell. Hence the number of vertices
under consideration is proportional to the number
of cells in the superimposed decomposition, which
is at most nrnp. This argument implies the asser-
tion of the theorem. O
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Corollary 3.2 IfR and B have n cells each, then
the complezity of their superposition is O(n?).

Proof: This follows immediately from Theo-
rem 3.1 and from the observation that the com-
plexity of each subdivision is O(n?). O

Remark. The preceding corollary can be applied
to solve problems that involve two distinct Voronoi
diagrams in 3-space. For example, given two sets
of point sites Sy, 52, each of size n, one might want
to find a point that satisfies some relationship in-
volving its nearest neighbor in S; and its nearest
neighbor in S;. To find such a point, one may have
to traverse all the cells of the subdivision obtained
by superimposing the two Voronoi diagrams of S
and of S2, and the corollary implies that such a
traversal can be done in quadratic time.

Acknowledgement

The authors wish to thank Boris Aronov and Emo
Welzl for several helpful discussions concerning the
problems studied in this paper.

References

[1] B. Aronov, J. Matousek and M. Sharir, On the
sum of squares of cell complexities in hyper-
plane arrangements, Proc. 7th Symp. on Com-
putational Geometry (1991), pp. 307-313. (To
appear in J. Comb. Theory Ser. A.)

[2] F. Aurenhammer, A criterion for the affine
equivalence of cell complexes in R? and convex
polyhedra in R¥*!, Discrete Comput. Geom. 2
(1987), 49-64.

[3] B. Chazelle, H. Edelsbrunner, L. Guibas and
M. Sharir, A singly exponential stratification
scheme for real semi-algebraic varieties and its
applications, Theoretical Computer Science.
84 (1991), 77-105. Also in Proc. 16th Int. Col-
log. on Automata, Languages and Program-
ming (1989) pp. 179-193.

[4] K. Clarkson, A randomized algorithm for clos-
est point queries, SIAM J. Computing 17
(1988), 830-847.



