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Randomizing Optimal Geometric Algorithms (Extended Abstract)

Larry Shafer?

William Steiger?3

Rutgers University Department of Computer Science

Abstréct

The parametric search technique of Megiddo has
been used to produce optimal deterministic algo-
rithms for a number of geometric problems, e.g.,
planar ham-sandwich cuts and slope selection. Un-
fortunately these algorithms inherit huge constants
from the parallel algorithms used by the technique.
Here we give very simple randomized versions and
show (experimentally and analytically) that the
constants in the asymptotically optimal running
times are small. These randomized versions could
therefore be argued to be the methods of choice for
their respective tasks. We also give a simple, new,
. randomized planar convex hull algorithm whose ex-
pected running time matches the average-case com-
plexity of good deterministic algorithms, and with
good protection (probability — 0 quickly) against
worst-case behaviour.

1 Introduction and Summary

One of the main advantages of probabilistic al-
gorithms is that they can almost always avoid
worst case behavior exhibited by deterministic al-
gorithms that perform the same task. Random-
Quicksort, which partitions with a randomly cho-
sen element, is perhaps, the most familiar exam-
ple. In fact the best known algorithms for some
problems are probabilistic, the most dramatic ex-
ample being primality testing (it is in random P
but there is no known polynomial-time determin-
istic algorithm). The problems of computing the
diameter of a point set in three dimensions and of
finding the median of » numbers are two other ex-
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amples where the best known algorithms are prob-
abilistic.

In this paper we highlight another way in which
probabilistic algorithms may be useful - by dramat-
ically reducing the constants in optimal determinis-
tic algorithms. This possibility arises because some
of the techniques used in these algorithms - namely
parametric search and ¢-approximation - can force
very large constants in the optimal asymptotic run-
ning times. Throughout we are working in a model
of computation where each binary comparison and
each arithmetic operation is taken as a “step”;i.e.,
the unit cost RAM. As an alternative to an optimal
deterministic algorithm with a large constant, we
offer probabilistic algorithms whose expected com-
plexities have the correct asymptotic order, and
also achieve this order with reasonable constants.
We also give a randomized planar convex hull al-
gorithm whose expected running time matches the
average-case complexity of good deterministic algo-
rithms, and with good protection (probability — 0
quickly) against worst-case behaviour.

In the remainder of the introduction we de-
scribe the problems for which we have devised sim-
ple randomized algorithms. We state the proper-
ties we can prove and some that we have observed
in computational experiments. Sections 2-4 con-
tain more details concerning the algorithms and
proofs of the theorems. However the space con-
straints force us to leave many details for the full

paper.

1.1 Slope Selection

Given n points in general position in the plane and
a positive integer k, slope selection is the problem
of finding that pair of points which determine the
line with the k*» smallest slope, amongst all the
(5) lines determined by the points. Cole et. al.
[2] described an optimal O(nlogn) algorithm that
depends crucially on the parametric search tech-
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nique of Megiddo [14]. Parametric search features
the use of parallel algorithms in designing efficient
serial ones. But the parallel algorithms can pass
on enormous constants to the serial ones that they
help produce. This is precisely what happens in
[2]. The first result of this paper is a new, sim-
ple, randomized slope selection algorithm in which
randomization allows us to bypass the parallel sort-
ing network that was used in the deterministic al-
gorithm. The new algorithm, Rand-Slope, is de-
scribed in Section 2. We are able to show that it
is a Las Vegas algorithm and we describe its com-
plexity.

Theorem 1 Given n points in the plane, Rand-
slope selects the line with the k** smallest slope
from the (5) lines determined by the points. With
probability — 1, as n — oo, the complexity is
O(nlogn) steps.

This compares favorably with an earlier ran-
domized algorithm of Matousek [12] which he
proved to have expected running time O(nlogn).
A more careful analysis of that algorithm, borne
out as well by studying an actual implementation
where the RAM operations were counted over a va-
riety of inputs, reveals that the constant hidden in
O(nlogn) is more than 20. The present algorithm
is simpler. It admits a further simplification, Rand-
Slope-2, which behaves very well in practice; exten-
sive testing on many random inputs suggest that it
has an implied constant of about 10. Thus, we ob-
serve empirically that the complexity is < 10nlogn
with high probability.

A basic ingredient of all our algorithms is a fast,
randomized selection routine based on the one pre-
sented by Floyd and Rivest [5],[6]. Their method
can find the median of » numbers with 1.5n4 o(n)
expected comparisons. Analysis and experiments
show that if this method is not implemented care-
fully, the cost is likely to be > 2n even for mod-
erately large values of n. We can tune parameters
that govern sample size and the way that recursion
is managed so that with high probability, the cost
is very close to 1.5n. These results will be discussed
in the full paper.

1.2 Planar Ham Sandwich Cuts

Given sets A = {a1,...,a,} and B = {by,...,bs}
of points in the plane, n = r + s, a ham-sandwich
cut is a line h with the property that at most half
of the points in A lie in either of the open half-
spaces defined by h and the same for the points
in B. The ham sandwich theorem guarantees the
existence of such a line and we consider the algo-
rithmic question of finding a cut. Lo and Steiger [9]
(see also [10] and [11]) described an O(n) algorithm
which settled the complexity question for the plane.
However their optimal time algorithm inherits very
large constants because it relied on the technique
of e-approximation. In Section 3 we present a sim-
ple, randomized version, Rand-ham, which allows
us to bypass the parallel sorting network step (or
other direct ways to achieve the e-approximation).
It is Monte-Carlo and we can prove that it has good
complexity with high probability.

Theorem 2 Given sets A = {a;,...,a,} and B =
{b1,...,bs} of points in the plane, n = r + s, with
high probability the algorithm Rand-ham will find a
ham sandwich cut in at most 80n steps.

It is true that the optimal deterministic al-
gorithm is also quite simple. However the con-
stant appears to be very large, probably more than
20, 000.

1.3 Planar Convex Hulls

Given a set S = {p1,...,pn} of n points in the
plane, we seek CH(S), the convex hull. One of
the simplest and most attractive algorithms is the
Quickhull algorithm of Eddy [3] (see related algo-
rithms of Green and Silverman [7], and Bykat [1]).
On random point configurations, Green and Silver-
man found Quickhull to have the best average-case
performance among several convex hull algorithms.
Overmars and Van Leeuwen[15] showed that the
average-case cost of Quickhull is linear when points
are chosen randomly from a uniform distribution
over some bounded convex region.

Quickhull finds a hull vertex and uses it to par-
tition the input set. In the partitioning, many
points of S may be eliminated. Starting with L and



R, the points of S with min and max x-coordinate,
partition S using £ = LR into sets A, the points
above £ and B, the points below £. During this step
we discover a € A, the point of maximal distance
above £ and § € B, the point of maximum dis-
tance below £. Focusing on A, the partition point
a is a hull vertex and all points of A below both Za
and aR may be discarded. This pruning is what
makes Quickhull so fast. However if the points are
in convex position, then like Quicksort, Quickhull
can perform O(n?) steps if the partitioning is not
balanced; the number of hull vertices between L
and a should be about the same as the number be-
tween o and R. It is easy to construct a set S,
of n points where Quickhull will always take O(n?)
steps.

Randomization can be used to provide good
protection against such worst case behaviour while
retaining good performance on average. Our Las
Vegas algorithms choose a partitioning hull ver-
tex at random (instead of the point of maximum
or minimum distance from £). We studied several
methods of making this random choice. We dont
know yet if one is best, so we combine them in an
algorithm Rand-Hull which does several methods
at once, alternately, and halts when the fastest one
terminates.

Theorem 3 Given a set S of n points in the plane,
let T,, denote the complezity of Rand-Hull. Then
P[T, = O(nlogh)] — 1 as n — oo, where h =
|ICH(S)]

The theorem guarantees protection against
worst case performance, even on the sets like S,
where Quickhull is quadratic. Note also that the
theorem only gives an upper bound on 7). Sim-
ulation experiments using uniformly distributed
points from regions of positive area in the plane
show that Rand-Hullhas the same average-case be-
haviour as Quickhull.

2 Slope Selection

Cole, Salowe, Steiger, and Szemerédi [2] gave an
extremely complex O(nlogn) optimal determinis-
tic algorithm for the slope selection problem. A
much simpler randomized algorithm was developed
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by Matousek [12]; it has expected running time
O(nlogn). Extensive testing of a tuned version
of Matousek’s algorithm shows that in fact the
complexity is < 21nlogn (We tested several val-
ues of n. For each value we generated 25 sets of
n points, computed the median slope line [deter-
mined by pairs of points] in each set, and averaged
the number of RAM steps over the 25 repetitions).

Here we present a new, simpler algorithm,
Rand-slope. We can prove that it always solves the
problem and that it terminates in O(nlogn) steps
with probability that converges to 1 as n — oo
(Theorem 1). We also present a modifcation, Rand-
slope-2, which in the same empirical testing, solves
the slope selection problem in < 9nlogn steps.

As in [2] it is convenient to consider the dual
form of the problem: the point (z,y) is mapped
to the line with equation v = zu + y and the line
with equation y = mz + b is mapped to the point
(—m,b), a transformation that preserves incidence
and the above/below relation of points and lines.
Therefore in the dual, we are given n lines in gen-
eral position and an integer k; we seek the ver-
tex v in the line arrangement with the k% small-
est x-coordinate. Here is a coarse description of
the randomized algorithm. The inputs are arrays
M = {m,...,m,} and B = {b1,...,b,} giving
the slopes and intercepts of the lines, along with n
and k; the output is the desired vertex, v.

¢ Rand-Slope(M,B,n k;v)

1. choose s = mnlogn distinct pairs
(4,7),% < j, each chosen according to
the uniform distribution.

2. for each pair compute z;; = (b; —
b;)/(m; — m;), the x-coordinate of the
intersection of the #** and j®* lines.
Let w3 < --- < wu; denote these x-
coordinates, in order.

3. use binary search with approrimate
ranking to find u, such that the kt* ver-
tex is in I = [uy, wpyq].

4. Use Bentley-Ottman line sweep on I to
find v.

¢ End



136

~ Some of the steps need explanation. Let ; <
-+ < ty be the sorted x-coordinates of the N = (3)
vertices of the arrangement. Recall that the rank
of a vertical line z = ¢ in an arrangement of n
lines is |{t; : ¢; < t}|, the number of vertices to its
left. This may be computed in O(nlogn) steps by
counting the number of inversions between the per-
mutation that sorts the slopes of the lines and the
permutation that sorts their intercepts with z = ¢.

Step 1: To get one pair, choose 7 uniformly from
(1,2,...,n) and j uniformly from (1,2,...,n)\i. It
is easy to get s distinct pairs in O(s) steps.

Step 3: From Step 2 we have the x-coordinates
of the s vertices in our random sample; call them
S = {u1,...,us}. To start the binary search we
compute 4 = median(S). Next we use the approx-
imate ranking of Cole, et.al. [2] to decide whether
the desired vertex v is to the left, to the right, or
on, the line z = u. If there are many vertices be-
tween v and z = u this procedure will terminate in
time O(n); if v is “close” to z = u it may require
O(nlogn) steps. Take the case v > p, the other
being similar. We continue, as above, by searching
for the largest vertex in S’ = {u; : u; > p} which
is smaller than v. This vertex is ¢;, and we get 41
in similar fashion.

Step 4: We rank z = ¢, (it is some number j <
k) and then sweep k — j vertices to the right.

Proof of Theorem 1: (sketch) The amortized
analysis of Step 3 is the only delicate part. With
probability — 1 as n — oo all but a constant num-
ber of the O(logs) binary search steps may be de-
cided by approximate ranking in O(n) steps. The
total cost of refining the approximations during the
binary search is O(nlogn).

The complexity of Step 4 is bounded by O(]{ :
t; € I}|logn). Obviously the expected value of
{i : t; € I}| is (5)/s = O(n/logn). An elemen-
tary probability lemma (omitted now) states that
with probability — 1 no interval I = (t;,%¢41) of
successive sample vertices contains more than cn

vertices of the arrangement. Therefore Step 4 is
also O(nlogn) with high probability. |Jj

The simplification effected by Rand-Slope-2 is
in Step 3. Instead, we use

o Step 3’. Let j = sk/(}) and select u, the jt»

smallest z;; . Rank p and sweep left if the
rank is greater than k, right otherwise.

For n < 200 this algorithm always solved the slope
selection problem in < 9nlogn steps. :

3 Planar Ham-Sandwich Cuts

As in the previous section, it is convenient to trans-
form the problem to a dual setting. Under this
transformation we have sets A = {ai1,...,a,} and
B = {by,...,b,} of lines in general position in the
plane, n = r + s. The dual of a ham-sandwich cut
is a point y with the property that at most half the
A lines are above or below it and the same for the
B lines. Thus p is an intersection of the median
levels of the A and B lines (recall that the p** level
in a line arrangement is the locus of points which
(i) are in some line of the arrangement and (ii) have
exactly p— 1 lines above). Here is a coarse descrip-
tion of our Las Vegas algorithm Rand-Ham. The
inputs are the arrays M, B giving the slope and in-
tercept of the n lines, 7, the number of A lines, and
n; the output is the ham sandwich vertex v.

¢ Rand-Ham(M,B,r,n;v)

1. choose a sample of k distinct A lines at
random, each chosen according to the
uniform distribution.

2. for each pair ¢ # j in the sample com-
pute z;; = (bj - b,-)/(m,' - mj), the x-
coordinate of the intersection of the 3t*
and j** A lines. Let uq < --- < ug de-
note these x-coordinates, in order, K =
(3)-

3. use binary search on the z;; to find the
ug such that v € I = [ug, ugy).

4. As in [11] construct a trapezoid 7 with
vertical sides on z =ty and on z = 444,
discard all lines that miss 7, and con-
tinue recursively on I.

¢ End

Steps 1 and 2 are self-evident. They replace the
costly construction of the epsilon approximation



used in [9]. With high probability, the sample of
A lines will be an e-approximation for the A lines
(with respect to segments) if £k > Ce~2loge™1.

Some of the other steps need elucidation: In
Step 0, we find p4 and pp, the median slopes of
the A and B lines.

Step 3: From Step 2 we have the x-coordinates

of the K = ('2‘) vertices in our random sample; call
them S = {uy,...,ux}. To start the binary search
we compute u = median(5). If the median levels
of the A and B lines at z = p are ordered in the
same way as 4 and pug, we know that v > u, and
we continue searching in the S = {u; : u; > pu}.

Step 4: As in [11], at both z = ¢, and z = t,44,
we compute the (1/2 — ¢)r-th and (1/2 + ¢)r-th
smallest intercepts of ‘A lines. These four points
determine 7.

Proof of Theorem 2: (sketch) The algorithm
finds a cut with high probability. It was proved in
[11] that if the sample is an e-approximation (i) at
least half the A lines will “miss” 7 and (ii) the ham-
sandwich vertex will be contained in 7. This occurs
with high probability as long as k > Ce~2loge~1.

The time bound is probably conservative. We
can take k = 300 and ¢ = 1/7 in Step 1, s0 K <
50000. Each binary search step is two selections,
1.5n RAM steps each, for a total of at most 54n.
In Step 4 the lines can be tested in time 2n. Each
phase of the recursion eliminates at least a quarter
of all remaining lines and summing the geometric
series that bounds the complexity gives the time
bound of < 767

4 Randomized Quickhull

The Quickhull algorithm has inputs L and R,
points with respective x-coordinates L, < R, and
a set S of points above the line TR whose x-

coordinates are between L, and R,. The output
is CH, the upper hull of SUL U R.

¢ Quickhull(L,R,S;CH)

1. |$| > 1find a point P € § whose (ver-
tical) distance above LR is maximal.
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2. Find Sies:, the points in S above P
whose x-coordinates are between L, and
P, and S,;45:, the points above PR with
x-coordinates between P, and R,.

3. Append P to CH and continue with
subproblems Quickhull(L, P, Sjess; CH)
and Quickhull(P, R, Syight; CH).

¢ End

In |S| = 1 in Step 1, that point joins CH and
we stop. If S is empty we just stop. The cost of
Steps 1 and 2 is O(]S]).

The following set S, = {Pi,...,P,} causes
Step 1 to choose P,,...,P,_; in sequence so the
algorithm will perform O(n?) RAM steps. P, =
(1,0), P, = (2,1), P, = (n,0), and define s; as
the slope of the line through P;_; and P, and
t; as the slope of the line through P; and P,.
Fori = 2,...,n -2 P43 = (i 4 1,941), and
Yit1 = ¥ + (si + t)/2.

Rand-hull chooses a random hull vertex in Step
1. One way to do this is to choose a pair P; # P; in
S, and then find thé supporting line £ whose slope
is the same as that of P;P; and with no point of §
above it. A point P € SN{is a random hull vertex
if both L and R are below £. If one is above, say L,
take P to be the point in S so all points are below
LP.

If S is convex, P behaves like the partition el-
ement in random quicksort: Suppose there are h
vertices of CH with x-coordinates between L, and
R.. The vertex P chosen in Step 1 is “good” if at
least h /5 of these vertices have smaller x-coordinate
than P, and at least h/5 have bigger x-coordinate.
The probability that a good vertex is not chosen
in, say 5 levels of recursion, is small. This gives
O(log|CH|) as the expected depth of recursion.
The proof of Theorem 3 rests on establishing these
statements.

We ran Quickhull and 10 repetitions of Rand-
hull on the set S, above, for'several values of n. In
this experiment the average complexity of Rand-
hull was 12nlogn RAM steps while Quickhull av-
eraged 6.8n* RAM steps.

Finally we note that the bound of Theorem
3 matches the optimal worst-case deterministic
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bound in [8]. However Rand-hull is very different
from a randomized version of that algorithm and
also differs from a modification described by Mc-
Queen and Toussaint [13].
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