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Abstract

We present in this paper a topological characterization of Hwang’s optimal Steiner trees. This characterization permits
to determine configuration yielding optimal Steiner components, and this only by considering the topology of
terminals’ position. We present an equation defining exactly the number of Steiner points of an optimal Steiner tree
following its number of terminals and so called optimal Steiner components. Finally, we present a simple procedure to
compute the set of points that can potentially be Steiner points of an optimal Steiner tree for some set of terminals.
One interesting property of this procedure is that it relies only on topological relation of the terminals’ position.

1. Introduction

Let P be a set of points in the plane and H be a tree in
the plane having V as vertices (points). H is a spanning
tree of P when P=V, and a Steiner tree of P when PcV.
The length of an edge in H is the distance in the plane
between two points (vertices) and the length of H is the
total length of all its edges. For a set P, a minimal
spanning tree (MST) is the spanning tree of minimal
length and the Steiner minimal tree (SMT) is a Steiner
tree of minimal length.

An Euclidian SMT (ESMT) and rectilinear SMT
(RSMT) are SMT problems with edge’s length measured
respectively in the euclidian distance metric and the
rectilinear distance metric. The distance between two
points p] and p2 in the rectilinear metric is defined as

d(p1.p2) = Ix1-x2! + Iy1-y2l,
where (x;,y;) are the Cartesian coordinates of p;. :

The MST and SMT problems are very well known.
The MST problem may be solved in O(n log n) time in
the plane where n=IPl, and both ESMT and RSMT
problems are NP-complete [4,5].

In this paper we present a topological characterization
of Hwang’s theorem [7] for rectilinear Steiner minimal
tree (RSMT). This theorem has been used in several
papers [1,3,11]. An extended survey of Steiner tree
problems is presented by Hwang [8]. This problem has a
direct application in VLSI routing for which
interconnected wires are constrained to consist of
horizontal or vertical line segments in a plane.

The presented topological characterization of optimal
Steiner trees (OST) was undertaken to reduce de number
of Steiner points that need to be considered to compute an
optimal solution. We show that the number of Steiner
points added to the number of so called optimal Steiner
components is always equal to n—1 in an OST, where n is
the number of terminals. This permits the design of more
efficient algorithms for obtaining exact or approximate

solutions of instances of this problem. They have already

been exploited by a neural network implementation of an
approximation algorithm [2].

We present in the next section notation and
fundamental terminology that are used in the rest of the
paper. In section 4 we present our characterization based
on previous work reported in section 3. Finally, in
section 5, we present a simple procedure based on our
characterization. It permits to determine a set of necessary
Steiner point that can composed an Optimal Steiner
component. The main property of this procedure is that it
relies only on topological relation of the terminals’
position.

2. Notation and terminology

We use the same terminology as in [10] and we refer
the interested reader to this paper for more information on
this subject. It is summarized in this section. We have as
input a set T of points in the plane that are called
terminals. A point having a degree greater than 2 in a
rectilinear Steiner tree is called a Steiner point. The -
distance between two points is measured in the Ly metric.
A line is a sequence of one or more adjacent, collinear
segments with no terminal in its relative interior. A
complete line is a line of maximal léngth. A corner is a
degree-two node which is not a terminal. A complete
corner is a comner with two incident complete lines each

- terminated by a terminal. The incident lines of a complete

corner are their legs.

Two transformations are defined for rectilinear Steiner
trees: flipping and sliding. Each transformation maps one
tree to another without moving the positions of terminals
and without increasing the length of the tree. Depending
on the direction, there are four slides and four flips.

Let © be the set of rectilinear Steiner minimal trees for
a terminal set 7. Among the elements of 71, let T; be the
trees which maximize the sum of the degrees of the
terminals. We characterize trees in T with the leftness
property. A tree is said to have the leftness property if it
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is impossible to apply any of the following
transformations: (1) a W-slide (West-slide), (2) a NW-or
SW-flip, or (3) a N- or S-slide followed by
transformation (2). Trees in 71 with the leftness property
are called optimal Steiner trees. A Steiner component is a
subtree of a tree in T for which the sum of the terminal
degrees equals the number of terminals in that subtree. An
optimal Steiner component is a Steiner component of a
tree in 1.

3. Review of previous theoretical results

We present in this section a review of theoretical
results about RSMT. Those results will be used in the
next section to demonstrate new properties of Hwang’s
optimal Steiner tree [7].-

Theorem 3.0 [6]
The number of Steiner points of a RSMT is smaller
or equal to n—2 where n is the number of terminal.

Theorem 3.1 [6]
There always exist a RSMT for some set of terminals
T having the following property: every Steiner points
are located at the intersection of a vertical and an
horizontal lines passing through two terminals. The
grid formed from all such vertical and horizontal lines
is named Hanan’s grid.

Theorem 3.2 [6]
Let have a Steiner point of degree 3 in a RSMT
connecting points pg, p1 and p>. Then no terminal
lies in the sinallest enclosing rectangle of pg, p1 and

p2.

Incident

segments\

Figure 1

Theorem 3.4 [7,10]

"Let n>4. An optimal Steiner component for n
terminals either consists of a single complete line
with n-2 alternating_incident segments, a complete
comner with n-2 alternating segments incident to a
single leg, or a complete comer with n—3 alternating
segments incident to one leg and a single segment
incident to the other leg (see fig. 1 where the thick
lines are legs). For the comers, the segment closest to
the corner node must point away from the opposite
leg."

An optimal Steiner component for n terminals (n>4)
has always one of the forms depicted in fig. 1 (crosses
and circles are respectively terminals and Steiner

points). For those cases, every Steiner point has a
degree of 3.

Corollary 3.5[10]
"Optimal Steiner trees consist of optimal Steiner
components joined at terminals of degree 2, 3 or 4."

Theorem 3.6 [7]
Any RSMT may be reduced to an optimal Steiner
tree.

4. Characterization of optimal Steiner
Trees

We make in this section a characterization of optimal
Steiner trees (OST). We have extended theorem 3.4 for

FI‘E.I,.

Figure 2

Corollary 4.0
Theorem 3.4 is applicable for any n when only
Steiner points of degree 3 are present.

Proof
We present in fig. 2a an exhaustive list of every
different component topology having Steiner point of
degree 3 for n<4. The corollary is always observed. O

Without proof, we present the following lemma:

Lemma 4.1
The only component’s topology having a Steiner
point of degree 4 is presented in fig. 2b. In that case,
two terminals have the same x-coordinate and two
others have the same y-coordinate. Furthermore, the
intersection of the segments between those two pairs
of terminals is not empty.

Corollary 4.2 4
Any Steiner point of an OST is connected both
horizontally and vertically by one line to at least one
terminal.

Proof
By examining exhaustively any OSC topology (fig. 1
and 2) we observe that this corollary is true for any of
them. Since OST are composed of OSCs (by
definition), the corollary is observed by any OST. O

We define the body of an optimal Steiner component:
as its complete line composed of the largest number of
Steiner points. When an OSC have two complete lines
composed of the same number of Steiner point (0 or 1),
then the vertical one is selected arbitrarily as the body
(fig. 2a). If an OSC is composed of a corner, than the line



adjacent to this comer which is not a body is called an
arm. An OSC that does not have a comer, does not have
an arm. From theorem 3.4, we know that the body and
the arm of an OSC are each terminated by at least one

4.1 Characterization of the form of an
optimal Steiner component

Theorem 4.3
Any OSC have one of the 4 following orientations (a
body is represented by a thick line):

c0 t
c2 t
csl-—xt
cl
t

Figure 3
Partial proof
Any other orientation does not satisfy the leftness

property. : o

From theorem 4.3, a corner of an OSC can only have
direction SE (comers cq or c3) or NE (corers ¢1 or ¢3)
but never SW nor NW. A body terminated by a terminal 7
may only have a direction relative to ¢ (fig. 3): North
(corner cg), South (comer ¢1) or West (comer ¢3 or ¢3)
but never East.

C

t0 t0
a) Figure 4 b)

Theorem 4.4
A Steiner component with corner ¢ having incident
body and arm respectively terminated by terminals 7
and fp, can be an OSC if at least one of the following
two cases is true:
a) the smallest enclosing rectangle r of terminals ¢
and 5 does not contain any terminal (fig. 4a);
b) the arm is composed of one Steiner point p, which
is connected by two segments to terminals 75,1 and
tn, and the smallest enclosing rectangle r of terminals
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fo and ;] does not contain any terminal (fig. 4b);

t0 9
. Figure 5

Proof

Consider case a). Suppose to the contrary that there
exist at least one terminal in r and select the terminal
t; in r which is closest to the body. It is then
possible to apply corner flips and segment slides to
produce a new Steiner tree having the same length.

More precisely, let consider without lost of
generality the configuration depicted in fig. 5Sa. Lets
¢’ be a point having the same x-coordinate has ¢; and
the same y-coordinate as the Steiner point connected
by a segment to c. We may apply a SE-flip to ¢ to
create a new comer ¢’ and following this, we may
apply a W-slide (fig. 5b). This double operation is
reapply from top to bottom until ¢; is reached. This is
possible since the body has alternating incident
segments. The newly found tree is depicted in fig. 5¢)
and it has the same length as the initial component by
definitions of slide and flip operations.

We now have two cases: the degree ¢; may be
increased by 1 or be the same.

— If it is the same, it means that the initial
component is member of an OST having a segment
going North from ¢#; (not shown in the fig. 5a). If this
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is the case, we have now an OST of smaller length

4 is called a cluster. An example of a cluster having its t;
since we collapse two segments one over the other.

(1<i<m) over an horizontal line passing through 1g is

Thus the initial component cannot be an OSC since it
is not a member of an optimal Steiner tree.

— If the degree of 1; is increased, than by integrating
the two newly found components to the original tree,
we have a new tree having greater sum of the degrees
of the terminals than the initial component. This is
in contradiction with the definition of optimal Steiner
tree (trees in 71 maximize the sum of the degrees of
the terminals) and thus the initial component may not
be an OSC.

The contradiction is completed, thus no terminal
may lie in rectangle r for case a).

A similar proof may be done for case b). o

Lemma 4.5

Consider an OSC having two Steiner points p; and pj
connected by a segment s. Those points (p;, pj) are
respectively connected to terminals (¢;, #j) by
segments perpendicular to s. Then the rectangle r
having corners ¢; and ¢j does not contain any terminal
(fig. 6).

Proof

From theorem 3.2 implies that the smallest enclosing
rectangle of two points connected to the same Steiner
point must be empty. Thus the rectangles having
corners (#j, p;) and (pj, ;) are empty. Since segment s
does not contain any terminal in its relative interior,
we are certain that no terminal lies in rectangle r. O

Figure 6

depicted in fig. 7.

t1 2
i t(m-1)

tmn

pl p2 pi pml) pm
Figure 7

Corollary 4.6

At most one of the non-terminal p; of a cluster (fg,
t,ees tms> P1,---» Pm.) Inay be a Steiner point of an
OSC.

Proof

Firstly, lets note that no more than one non-

“terminal point among p1, p3,..., Pm mMmay be Steiner

point of a body of an OSC. If this was not the case,
we would have two connected Steiner points of a body
with non-alternating segments which is not possible
for an OSC.

We will now prove that if more than one of the
non-terminal point of a cluster is a Steiner point, then
they must be in the body of the same Steiner
component and thus cannot compose an OSC. For the
sake of clarity, we will consider without lost of
generality the cluster depicted in fig. 7. From
corollary 4.2 we know that if a non-terminal point is
a Steiner point than it must be connected by a line to
to. This must be the case since fg is the only terminal
on its horizontal line (from cluster‘s definition). If
two non-terminal points are Steiner points then they
are both connected by a line to #g. Since they are on
the same side relative to the g, they must be member
of the same body. o

Corollary 4.7

In a cluster (to, f1,..., Im, P1;.-.» Pm.) Only the p;
with terminal ¢; closest to p’s line may be a Steiner
point of a body or an arm terminated by #p.

Let have a set of terminals ?g, 71, ....I;m and a set of Proof
non-terminal points pi, p2,..., pm. Consider the We first consider the case of a body. From corollary

following configuration: 4.6 we know that in a cluster at most one non-
1- terminal #j (1<i<m) has the same x-(y-)coordinate terminal point may be selected as Steiner point of the
as point p;; same body. Let suppose to the contrary that a body

2- all p; are located consecutively on Hanan’s grid on
the same horizontal (vertical) line as 7o, and on the
same side relative to 7g;

3- No terminal lies on the same horizontal (vertical)
line as ¢g.

4- every t; (1<i<m) is on the same side (left, right,
top or bottom) relative to the p’s line;

5- no terminal collinear to p;.; lies on the other side
of the p’s line.

Such configuration with point (g, f1,..., #m, P1s--+» Pm.) -

have a Steiner point p; having terminal ¢; which is
not the closest to p’s line. Then we have two cases:

a) there is at least a terminal f; closer to p’s line in
the direction of terminal 1g;

b) there is at least a terminal #; closer to p’s line in
the direction opposite to terminal #g.

For both of those cases we always have a violation
of lemma 4.5:

In case a), point p; must be connected in the
direction of fq to a Steiner point py or g itself (from



theorem 3.4). For both of those cases the smallest
enclosing rectangle of ¢; and rg, or ¢; and pk does
contain terminal #;.

In case b), point p; must be connected in the
direction opposite to fg to a Steiner point pg on p’s
line or a terminal #; that is on the other side of p’s
line (from theorem 3.4). In both of those cases the
smallest enclosing rectangle of ¢; and tk or ; and pg
does contain the terminal #;.

The proof is similar for the case of an arm. =]

4.2 Number of Steiner points and
Optimal Steiner components

Let have an OST with T as its set of terminals, S and
O respectively as its set of Steiner points of degree 3 and
4, and finally C as its set of OSC.

Theorem 4.8 .
ICI + IS + 2*IQ1 = IT1 - 1 (eq. 1)
Proof
The proof is done by induction. Firstly, note that
equation 1 holds for any OSC (fig. 1 and 2).
Secondly, let A7 and A2 be two subtrees of an OST
having one common terminal. Define Tj, Sj, Qj and
Cj respectively as the set of terminals, Steiner points
of degree 3 and 4, and OSC of A;. We know from the
induction step that
IC1 41811 + 2*¥1Q411 = ITq1-1
IC31+1S21 + 2*1Q51 = ITHl-1

and by adding both equations
IC1l + 1511 + 1Cal + 1551 + 2*(1041+1Q35)) =
Tl + 1731 -2 (eq.2)

Since A and A are distinct except for one common
terminal, we have
ITy U Tl +1 =T}l + IT3l and
IC1 L Gl +151 L Sal + 2¥I0, U Qsl =
IC1HICal +1S1 1+ 1S9l + 2*(101 +1Q5)).
Consequently, by substituting from equation 2,
IC1 U Cal +1S1 U 8ol + 2401 U Qo =
T+ 1Tl -2=IT1 U Tal-1
Thus, composed tree (A1 + A2) observe equation 1.
o

The importance of the previous result is that it
enables to determine the exact number of Steiner points in
a OST depending on its number of OSC. Previous result

from [6] (theorem 3.0) only give an upper bound on the

number of Steiner points in a Steiner tree. In our case, an
exact procedure can take into account the number of OSC
to reduce accordingly the number of Steiner points in the
searched domain. It is interesting to note that the maximal
number of Steiner points, that is I71 — 2 (theorem 3.0) is
attainable only and only if one component is present.

5. Enumerating Potential Steiner Points
It is possible to enumerate all potential Steiner points
of an OST by the following procedure:
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1- following theorem 4.3 and 4.4, determine every

potential comer of an OST;

2- for each of those corners, compute a set of potential

Steiner points following corollary 4.6 and 4.7.

We present in fig. 8 the results of the application of
four procedures to reduce the number of potential Steiner
points of a specific set of terminals (crosses and dots
represent respectively terminals and potential Steiner
points). We have in fig. 8a) the rectilinear convex hull
[12] (47 points); in fig. 8b) Provan [9] result using
Steiner hull (41 points); in fig. 8¢) our new results (14
points); and in fig. 8d) the application of our result and
Provan algorithm [9] (13 points). This example shows an
interesting characteristic of our procedure that permits to
use geometrical characterization to furthermore reduce the
size of the potential Steiner point set. It would be easy to
prove that the potential Steiner points found by our
procedure are always member of the rectilinear convex
hull of the terminal point set.

A careful analysis of the special case of fig. 7d
permits to determine that no component may have more
than 2 Steiner points. Furthermore, since at most one
component may have more than 1 Steiner point in an
OST (with further analysis), we are able to find from
theorem 4.8 a bound of 5 (instead of 8 from theorem 3.0)
on the number of Steiner points .

N S X
x. o e o e x ...... .
B S X - - -
.x.. .-x

....x ..... x
..x.. ...x
x .x. B
x o o o .x
a)47 b) 41
X X
. X . X
X X
.x . x
.x.. x..
..x ..x
X - - X
X X -
X X
X X
, c)14 d13
Figure 8

6. Conclusion

We have presented in this paper a topological
characterization of Hwang’s optimal Steiner trees. This
characterization permits to determine configuration
yielding optimal Steiner components, and this only by
considering  the topology of terminals’ position. We
presented an equation defining exactly the number of
Steiner points of an OST following its number of
terminals and optimal Steiner components. Finally, we
presented a simple procedure to compute the set of points
that can be Steiner points of an OST for some set of
terminals. One interesting property of this procedure is
that it only relies on topological relation of the set of
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The characterization of optimal Steiner trees should
permits the design of more efficient algorithms for
obtaining exact or approximate solutions to this problem.
Also, it can be used to find interesting special cases of the
rectilinear Steiner minimal tree problem.
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