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Abstract

We give a logarithmic-time algorithm to compute
the shortest segment joining two convex n-gons A
and B while avoiding another convex n-gon C. Our
algorithm uses a tentative prune-and-search tech-
nique on standard representations of the polygons
as arrays or balanced binary search trees.

1 Introduction

8

5

Figure 1: A shortest segment

This paper gives an optimal, logarithmic-time so-
lution for a problem that Bhatacharya, Egyed, and
Toussaint [3] called “computing the wingspan of a
butterfly.” We state the problem as a constrained
search for a shortest segment: given three disjoint
convex polygons, A, B, and C with n vertices
apiece, compute the shortest segment s that joins
A to B and does not intersect the interior of C, as
shown in figure 1.

We assume that the polygons are represented as
ordered lists of the vertices on their boundaries and
that one can retrieve a “middle” vertex and one of
its tangents from any list. This is certainly the case
if polygon vertices are stored in an indexed array or

*Both authors supported in part by NSERC Research
Grants.

in a balanced binary search tree that is threaded for
successors to allow computation of the line segment
Jjoining adjacent vertices. With such representations
of polygons A and B, the following can be computed
in O(log n) time [9]:

o The shortest segment joining A to a point,

o Tangents to A through a point,

o Intersection of A with a line,

o Tangents to A with a given direction,

o Inner and outer common tangents to A and

B [6, 8], and ’
o The shortest segment joining A and B [4, 5.

The first four can be computed by binary search;

the last two by prune-and-search techniques, which
repeatedly apply a constant-time test to local infor-
mation to discard half of one of the polygons.
Bhattacharya et al. [3] defined a butterfly polygon
to be an n-gon A with exactly four convex vertices
ay,...,a4 that lie on the boundary of the convex
hull of A in the given order. The wingspan of A is
the length of the shortest chord inside P that joins
the concave chain between a; and a3 to the concave
chain between ag and a4. Bhattacharya et al. gave
an O(log? n) algorithm for the problem of comput-
ing the wingspan of a butterfly, which they used as
a subproblem to compute shortest transversals of
line segments [1, 2]. The problem of computing a
constrained shortest segment is essentially equiva-
lent: one problem can be reduced to the other in
logarithmic time by computing common tangents.
In the next section we characterize the short-
est segment ab that joins A and B and avoids the
interior of C. In section 3 we give an optimal
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logarithmic-time algorithm to compute ab avoiding
C by using tentative prune-and-search, in which we
may make tentative discards that are later certified
or revoked [7].

2 Characterizing the shortest
segment

Given disjoint convex n-gons A, B, and C, we want
to compute ab, the shortest segment joining A to
B that does not intersect the interior of C. We
assume, without loss of generality, that A is to the
left and B is to the right of a vertical separating
line. We further assume that the polygon vertices
are in general position; e.g., that there are no pairs
of parallel edges or collinear vertices. This makes
the segment ab unique.

Figure 2: Shortest segment through o

For a particular choice of normals v, and v,
which are perpendicular to tangents at a € A and
b € B, we measure the angles 8, counterclockwise
(cew) from ab to v, and 6 clockwise (cw) from ab
to vs. If no subsegment of ab joins A to B, then
these angles are in the range [, 7]. We define the
balance line £ to be the line through v, N v and
perpendicular to ab as shown in figure 2. The bal-
ance point is the intersection point abNne, if it exists.
Note that if a or b is a vertex, there may be many
balance points. We can characterize the shortest
segment ab in terms of a balance point.

Theorem 1 The shortest segment ab that joins A
to B and avoiding C either
o is normal to A at a, to B at b, and does not
intersect C, or
o is tangent to C and has normals v, and v
such that ab separates C and the normals, and

the balance point is a point of tangency between
ab and C.

Proof: The first possibility is that the shortest
segment ab that joins A to B ignoring C. If ab
is not normal to both A and B then ab is not a
local minima. There is only one globally shortest
segment by convexity of A and B.

If C blocks this first possibility, then we must
consider the second. If ab does not touch C, then
ab can be shortened by moving a and b towards
the endpoints of the blocked shortest segment.
Therefore we can assume that ab is tangent to C.

Let the origin o be the leftmost point of tan-
gency with C, and let v, and vy be the most-cw
normals at a € A and b € B. If we rotate ab ccw

by angle ¥, then ab pivots on o and sweeps poly-

gon edges with normals v, and v3. The change in
length of the segment 0a is

Tololl gy = lelltante.
Similarly, the change in ob is ||b]| tan;. There-
fore, a ccw rotation does not decrease the length
of ab if and only if ||a|| tan 6, < ||b]| tan 6.

If we choose the origin o as the rightmost point
of tangency and choose the most ccw normals v,
and v, then we derive the opposite inequality for
cw rotation of ab. Taken together, these two in-
equalities imply that the length of ab is a local
minimum if there exist normals v, and v and -
an origin on ab and C such that ||a||tanf, =
||b]| tan 8. This balance equation can hold only
when 6, and 0 are both positive. In this range,
both tanf, and the length of the segment from
a to C are monotone decreasing functions of the
slope of ab. Because ||b]|tand, is monotone in-
creasing, any local minimum is the unique global
minimum.

Geometrically, ||a]| tan @, is the length of a seg-
ment 5P perpendicular to ab at o and intersecting
the normal v, at p. For the balance equation to
hold, the point p must be the intersection of v,4
and v;. The balance point, which is the orthog-
onal projection of p onto ab, must be a point of
tangency with C. =



Figure 3: @’V is ccw of ab

In the rest of this paper, we assume that the nor-
mals v, and v, are above ab. Figure 3 illustrates a
corollary to theorem 1. If segments ab and o'y’ both
join A to B with a’ below ab and b’ above ab, then
we say that a’b’ is ccw of ab.

Corollary 2 Ifa’V’ is ccw of ab, then any ezisting
balance point of a’V is right of the balance line £ of
ab.

Proof: For the balance point o’ to exist, normals
vgr and vy at @’ and b’ must make positive angles
with a’¥. Their intersection point v4s N vy must
therefore be below v, and above v;—which places
it to the right of £ and the projection of this inter-
section onto a’t’ moves only further right of . m

3 An optimal algorithm using
tentative prune-and-search

It is well known that the shortest segment ab join-
ing A and B (ignoring C) can be computed in
logarithmic-time by a prune-and-search algorithm.
We sketch thé details as an illustration of the tech-
nique of repeatedly throwing away half of some-
thing.

Theorem 3 (Edelsbrunner [5])
The shortest segment s joining two disjoint convez
n-gons A and B can be computed.in O(log n) steps.

Proof: Since we have assumed a vertical separat-
ing line, we can begin by computing outer com-
mon tangents in logarithmic time and clipping A
and B to the portions that can be joined by seg-
ments. (One can do without the separating line
by complicating the algorithm below.)
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We want to find
ab normal to A
and B. Consider
vertices a € A and
b € B and look at
their tangents 7,
and 7. Suppose
that 7, and 7 sep-
arate ab from the
polygons and, without loss of generality, that
they form a triangle above ab in which the angle
at a is acute, as in figure 4. Then all vertices be-
low ab on A can be discarded: Any vertex a’ € A
has its normals below ab, but the vertices of B
with parallel normals are above ab.

Figure 4: Discard from A

If a and b are always chosen as midpoints of
their respective polygons, then O(logn) discards
reduce one of the polygons to a single edge. We
can complete the solution by computing a tangent
parallel to this edge and the shortest segments
from the edge’s endpoints. =

We can check in logarithmic time whether the
segment s found by this algorithm intersects C. If it
does not, then s is the shortest segment joining A to
B that avoids C. If it does, then we clip 4 and B at
the endpoints of s and use inner common tangents
with C to further clip A, B and C to portions that
could be in contact with ab and have positive angles
with the normals. The angle condition follows from
the fact that both tangents must be positive for the
balance equation of theorem 1 to hold. Notice that
the portions remaining of A and B are monotone
with respect to all tangents to the remainder of C.

We now use the tentative prune-and-search tech-
nique [7] to reduce one of the polygons to a sin-
gle segment. Our normal mode of operation is like
standard prune-and-search: we look at three middle
points and their normals/tangents in constant time
and try to discard half of one of the polygons A, B,
or C. In one configuration we will not have enough
information to determine what must be discarded;
it is possible, however, to tentatively discard half of
each polygon with the assurance that one of the dis-
cards is correct. We do so and switch into tentative
mode.
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In tentative mode we introduce midpoints on one
polygon at a time in round-robin fashion and do one
of two things. We either perform a tentative dis-
card from the polygon under consideration or cer-
tify that all of the tentative discards that have been
performed to one of the polygons have been correct,
revoke all other tentative discards, and return to
normal mode.

Lemmas 5 and 6 prove that the normal and ten-
tative mode computations described above can be
correctly implemented in constant time. Anticipat-
ing these lemmas, we use a potential function argu-
ment to establish the running time of the algorithm.
Theorem 4 The shortest segment ab that joins A
1o B and avoids C . can be computed in O(logn)
time, given standard representations of the disjoint
convezr n-gons A, B and C.

Proof: The state of a polygon A can be de-

scribed by AR, the number of segments remain-

ing, and Ar, the number tentatively discarded.

The potential of A is defined as &4 = 2log Ag +

4log(Ar + Ar). The global potential is the sum

of the polygon potentials, plus five in tentative
mode:

®=%,+ P+ Pc +5(Ar + Br + Cr > 0).

Clearly, ® > 0 at all times and initially & =
O(logn). We show that ® decreases by a constant
at each step.

In three of the steps the decrease is easily seen:
In normal mode, a step that stays in normal mode
discards half of some polygon and decreases ® by
6. In a transition to tentative mode, the net de-
crease in polygon potentials is 6, and ® decreases
by 1. In tentative mode, a step that stays in ten-
tative mode tentatively discards half of the cur-
rent polygon and decreases ¢ by 2.

In a transition from tentative to normal mode
that certifies the discards to polygon A, the
change in @4 is 4(log Ar —log(AR+AT)) , which
is (—4) times the number of tentative discards
applied to A. The change in ®p is 2(log(Br +
Br) — log Bg) and the change in ®¢ is similar.
Since B and C have been subject to at most one
more tentative step each than A, the change in &
is at most 4 — 5 = -1.

Since each step is implemented in constant time
in lemmas 5 and 6, after O(logn) steps we have
reduced one of the polygons to a single segment.
Lemma 7 argues that we can then complete the
computation in logarithmic time. »

If we have introduced a € A, b€ B, and c € C,
then we denote the upper portions of A and B by
af and b1}, the lower portions by a{ and b{ and
the left and right portions of C by c< and ¢=.

Lemma 5 In normal mode, we either discard half
of a polygon or tentatively discard half of every poly-

" gon and enter tentative mode.

Proof: We assume, by reflection if necessary,
that we are given a configuration with the middle
point ¢ € C to the left of the balance line £ de-
fined by ab. We consider the tree of five normal
cases in figure 5, based on the location of ¢ and
its tangent 7.

We justify the actions as follows. Cases N1-
N4: Segments starting at or tangent to discarded
points cross from below ab to above, touch C
left of line £ but have their balance points right
of £ according to corollary 2. Therefore, by theo-
rem 1 they cannot participate in the shortest con-
strained segment. Case N5: This is the case that
causes entry to tentative mode. The shortest seg-
ment a’t’ can touch at most one of the three ten-
tatively discarded polygons—e.g., if a’t’ touches
al} then it is clearly tangent to c<= and, in order
for the balance point to be on C, it touches b{}. m

Once we enter tentative mode then we continue ac-
cording to the next lemma.

Lemma 6 In tentative mode, we either discard or
tentatively discard half of the polygon under consid-
eration or we certify all tentative discards made to
one of the polygons and return to normal mode.

Proof: We consider refining each of the polygons
‘in turn: introducing ¢ as a middle point in the
remaining portion of C, introducing a’ in A, and
finally introducing b’ in B. Remember that ¢ is
left of the balance line £.
Introducing ¢ in the undiscarded portion of C
gives five cases of figure 6, which have the same
justification as the five normal cases in figure 5.
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bove 35 <a, below 7.: N1. Discard a{}
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Figure 5: The five cases for ¢ € C and tangent 7. in normal mode

_— oa below 7:  C1. Certify a
¢ above a'b<a above 7»: C2. Discard ¢/ < @
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Figure 6: Five cases for ¢/ € C and tangent 7./ in tentative mode

In cases C2 and C3 we discard half of what re-
mains of C. We call this a tentative discard to
simplify the potential function argument, but in
practice we can discard ¢’ < permanently. In
cases C1 and C4 we discard a portion of A or
B that has been tentatively discarded already.
This is a certifying discard, which allows us to
revoke other tentative discards and return to nor-
mal mode. In case C5 we are in essentially the
same configuration as in N5—we can extend the
tentative discard on C to ¢’.

Introducing @’ in the undiscarded portion of
A gives four cases shown in figure 7, which de-
pend on the location of ¢ with respect to a’b and
the new balance line # for a’d. Case Al is the
tentative discard configuration, so we extend the
tentative discard to a’. Cases A2 and A3 are cer-
tifying discards to B and C. Case A4 is a normal
discard to a’ft. Cases A3 and A4 are mirror im-
ages of normal cases in figure 5 because ¢ is to
the right of the balance line ¢'.

Introducing b’ gives the five cases of figure 8.
In case B2 we extend the tentative discard to b'.

Cases B1, B3 and B4 are certifying discards to
A and C. Case B5 is a normal discard to b |.
Cases B3-B5 are mirror images of normal cases
because c is to the right of the balance line ¢. »

We need to argue that the computation can be
completed in logarithmic time once one of the poly-
gons has been reduced to a single segment.

Lemma 7 If one of the polygons A, B or C is a
single segment, then we can finish the computation

of ab in O(logn) time.

Proof: If C becomes a single segment s, compute
where the extensions of s hit A and B and use
theorem 1 to decide if the resulting segment ab
is shortest or if the shortest ab is tangent to an
endpoint of s. If the latter, then refine A and B
and normal discard N1 or N4 applies.

If A or B becomes a single segment s, then
one can compute the two segments ab from the
endpoints of s, tangent to C, and touching the
other polygon. If neither of these is the shortest
segment, then refine the remaining polygons and
choose on s the intersection with the tangent to
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, a’ below 7.:
’ c
< cleft of £ <a,' above 7.: A2. Certify bft
g .
. , @’ below 7.:  A3. Certify c=
c right of £ <a’ above 7,: Ad. Discard o/t

c above at/: B1. Certify al
c ?eft of ¢ -<c below a¥’: B2. Tentatively discard &1t
< ) ./ C below at/: B3. Certify c=>
c right of £ <c above W<b’ above 7.: B4. Certify c=
v below 7.: BS5. Discard b’

A1l. Tentatively discard o’ |

Figure 8: Five cases for b’ in tentative mode. The balance line for ab is ¢

the refined C. One of the normal discards N1-N4
applies.

When all the chains are single segments, the
solution can be completed by simple algebra. m
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