75

Geolab: An Environment for Development of Algorithms in
Computational Geometry

P. J. de Rezende*

W. R. Jacomettit

Departamento de Ciéncia da Computacio
IMECC — C.P. 6065
Universidade Estadual de Campinas

13081-970 Campinas SP Brazil

Abstract

We describe a Computational Geometry Labora-
tory which we developed as a programming envi-
ronment for implementation, testing and anima-
tion of geometric algorithms. Geolab was con-
ceived to be a tool for the working researcher or
a group of them, since at its root lie the use of
shared libraries of algorithms and an incremental
approach to aggregating new types of geometric
objects, data structures and extensions accessed
through dynamic linking.

1 Introduction

Programming environments directed towards
problems of specific fields have been a way of co-
herently organizing a set of tools needed in those
fields. Such is also the case in Computational Ge-
ometry.

The need for programming environments for the
development of geometric algorithms has been ev-
ident for more than a decade. The intricacy of
many solutions to problems of geometric nature
calls for the compilation of several resources into
a single programming environment.

1.1 Related Work

Earlier attempts to achieve this goal include
XYZ GeoBench [Sch90] and the Workbench for
Computational Geometry [KMM+90]. The former
was implemented in Object Pascal and runs on
Macintosh computers while the latter was written
in SmallTalk also for Macintoshes. Other related
works are Ericson and Yap’s LineTool [EY88] and

*Supported in part by CNPq Grants 300157/90-8 and
500787/91-3, and a Fapesp Grant.

tSupported in part by CNPq Grant 130767/90-5 and
Fapesp Grant 91/4497-6.

Mehlhorn and Naher’s LEDA [MN89]. Further-
more, the usefulness of algorithm animation for
better understanding of the behavior of algorithms
and as a teaching tool has been recognized for a
number of years. Brown’s Balsa [Bro87], and more
recently Zeus [Bro92], Stasko’s Xtango [Sta90] and
Amorim and de Rezende’s AnimA [AdR] are wit-
nesses to this fact.

1.2 The Geometry Laboratory:
Geolab

Geolab binds together support for software and
algorithm development and support for real time
interaction. Essentially, these consist of:
Support for development:

¢ Built-in abstract data types for representation
of geometric (and other) entities;

¢ Data structures and general purpose algo-
rithms;

e Basic algorithms and some complex geometric
data structures (as building blocks);

e Mechanisms for creation and incorporation
of new components (algorithms, interactive
modes, data structures and even data types)
without requiring recompilation of the envi-
ronment;

e Tools to allow the production of reusable
shared libraries;

¢ Methods to convert between data representa-
tions, and one core (yet powerful) data struc-
ture (half-edge) to simplify the task of conver-
sions and of external storage.

Support for interaction:

¢ An interactive graphical environment for the
manipulation of geometric models;

e Facilities for the construction of sets of input
data to test average performance and degen-
erate cases;

e Support for debugging and obtaining statisti-
cal data on run-time performance;

176

o Tools for handling secondary storage;

o Customization of algorithm animation (levels,
speed, and other attributes).

Geolab is written in C++ and makes extensive
use of object oriented programming for a hierar-
chical modeling of geometric objects and of geo-
metric algorithms. It currently has about 40 algo-
rithms in its dynamically linked libraries which are
made up of roughly 45000 lines of C++ code (plus
an additional 50000 lines for the environment it-
self). It runs on SparcStations under Sun/OS using
the XView graphics library, following the OpenLook
graphical user interface guidelines.

2 Presenting Geolab

The environment consists of a central kernel
which requires no changes in order for one to in-
clude new components to the environment, regard-
less of whether they are new external modes, algo-
rithms or even data types. Allthese are aggregated
to the system by means of shared libraries.

We should emphasize here that the kernel itself
contains no geometric algorithms whatsoever; they
are all externally provided as part of dynamically
linked shared libraries.

This keeps the system as small as possible which
is a significant plus when one has several dozens
of algorithms incorporated. That way, memory
consumption by the environment is kept to a bare
minimum, leaving as much memory as possible to
the algorithms themselves. By virtually eliminat-
ing the need to swap portions of the system off to
disk (even when only 8Mbytes of RAM is avail-
able), measurements of CPU time for the sake of
run time comparisons are much more reliable.

2.1 Graphical Interface

Geolab is based on a graphical representation
of the geometric objects on which it operates. This
is specially useful since the visual outcome greatly
helps the understanding and debugging of algo-
rithms and manipulation of geometric data.

The interface consists of an Editing Area onto
which objects can be manually or automatically
generated. From the palette of Operation Modes,
the user can pick a tool to create, select, move,
reshape, zoom or scroll the objects on the Editing
Area, while from the various menus, the user can
choose a variety of actions.

Once objects have been created (in the editing
area), the user may select some or all of them.
At this point, the system consults each algorithm

available on whether it can handle the current se-
lection. Only those able to handle the selected
objects will the enabled on the Algorithms Menu.
By selecting an algorithm from this menu, the user
requests the system to pass the selection as argu-
ment to the algorithm. The result, whenever it is
a set of geometric objects with graphical represen-
tation (see section), is then placed on the editing
area with the current default graphical attributes.

Additionally, two user-chosen externally imple-
mented modes can be installed in the palette of
operation modes at any given time. One of these
is an Interactive Creation mode and the other is a
Functional Mode. These can be just about any-
thing, such as an interactive simple polygon cre-
ation tool, or a query type shortest path (among
obstacles) mode.

2.1.1 Input Data Generation

One of the difficulties that appears in testing
geometric algorithms is the generation of interest-
ing test data. While the editor contains tools for
that purpose, some automatic means to build ei-
ther large or very particular sets of data are often
desirable.

A few input generation functions are provided
within the environment to ease this task. There
are generators of pseudo-random convex, star
shaped, simple and general polygons as well as
generators of random point sets satisfying speci-
fied restrictions (bounded areas or contours).

2.1.2 Animation Modes

Two animation modes have been incorporated
into GeolLab (see [dRJ93a]). The first one is called
dynamic move. It basically animates the geometric
objects produced as output by any given algorithm
as the input undergoes changes in real time con-
ducted interactively by the user manipulating the
mouse (watch [dRJ93b]). No changes in the code
of the algorithms are required for this mode to
operate. It serves well the purpose of illustrating
the relationships between input data and output
geometric constructs, which, for teaching compu-
tational geometry is of great value.

The second mode (see figure 1), which truly
characterizes as algorithm animation, requires the
inclusion of code for graphical display of geomet-
ric actions taken by the algorithms. In order to
facilitate this task, a library of graphical routines,
called GeolLab Animation Toolkit, is provided so
that programmers need not recourse to the lower

level Xlib functions. However, any such code, be-
ing conditionally compiled, does not compromise
portability, so that even animated algorithms can
be ported unchanged for use in contexts other than
within Geolab.

2.2 Programming Support

Together with the graphical interface, the envi-
ronment contains a large set of tools intended to
help in the process of construction of geometric al-
gorithms and abstract data types (ADTs) — for
representation of geometric and non-geometric ob-
Jects. Our approach consists of providing an ample
set of extensible C++ classes, hierarchically orga-
nized.

2.2.1 Object Oriented Programming

Geolab provides in a simple and efficient way a
number of geometric ADTs. Several of these are
logically derived from others which makes the in-
heritance mechanisms very desirable since it eases
code maintenance.

Additionally, we decided to approach the con-
struction of geometric algorithms also hierarchi-
cally since algorithms in Computational Geome-
try can be organized according to classes which
share the same characteristics (e.g. regarding
the paradigms which they employ: plane-sweep,
divide-and-conquer, etc.).

2.2.2 Visualization System

In order to keep GeolLab as independent .as
possible of the specific resources of the host, we
created an effective abstraction of many such re-
sources within a visualization system called World
which defines all the tools for graphical represen-
tation of geometric objects. This system offers:

e the use of real (homogeneous) coordinates and

orientation of the coordinate plane;

o the manipulation of graphical elements not
supported by traditional toolkits (e.g. rays,
points at infinity, etc.);

o the control of dimensions and position of the
virtual plane of visualization, allowing for the
operations of Zoom and Scroll to be easily
done;

o the treatment of external events through fil-
ters (see [Jac92]);

e the isolation of the machine dependent code
with respect to the graphical input and out-
put, facilitating portability;

177

e integration of the windows management pack-
age XView with C++.

2.2.3 Geometric Objects

The approach used for the implementation of
the many geometric objects handled by Geolab
consists of the creation of a double hierarchy of
classes — pure objects and graphics objects. This
is of fundamental importance in questions such as
generic libraries, uniformity of the treatment of
objects by the editor, and savings of space in de-
rived and/or composed representations.

The purpose of a double hierarchy of geometric
objects is to separate data and essential methods
of data (e.g. the coordinates of vertices of an ob-
ject) from the methods used by GeoLab itself (e.g.
color, label, thickness of lines, etc.).

For each pure geometric object (e.g. Point2D),
there is a graphical geometric counterpart. While
the pure objects implement data and methods spe-
cific to their geometry, graphical objects imple-
ment the set of data and methods which define
the protocol of interaction used by the environ-
ment to manipulate them. This dual functionality
allows the creation of composed objects without
the undesirable duplication of information. E.g., a
line segment is comprised of a pair of pure points

-and only one graphical object (of type Segment).

The savings on memory and code to manipulate
such objects is an immediate consequence of this
approach.

In addition, it allows for the implementation
of geometric algorithms which are essentially in-
dependent of the environment since they are re-
stricted to manipulating pure objects.

When the user activates an algorithm to act
upon the selected objects, a Dispatcher sorts out the
pure (geometric) objects’ informations from the
graphic objects’ informations and passes just the
geometric data to the algorithm. The Dispatcher is
also responsible for adding graphical information
to the (pure) objects returned by the algorithm.
This mediator is essentially a virtual constructor
which hides the environment from the external al-
gorithms.

In order to avoid an explosion of the number
of different classes, we recourse to a mechanism
which we call dynamic characterization of objects.
In a language which permits type migration, this
mechanism allows for many class derivations to be
avoided. We take advantage of this by making
each object able to inform its geometric type and
subtype (e.g. type polygon; subtype convex).

Further details about the programming sup-
port, built-in types, classes, methods, messages,

178

protocols and geometric primitives can be found
in [Jac92].

3 Programming in the
GeolLab Environment

While the previous section concentrated on a de-
scription of the kernel of GeoLab, here we confine
ourselves to describing the techniques and con-
cepts which were incorporated in order to allow
the incremental growth of the environment. There
are four fronts where this growth can take place:
algorithms, geometric objects, interactive creation
tools and functional modes, none of which require
any changes to the kernel itself. In this way, we
are able to keep separate the stable kernel from
the components under development.

The most immediate consequence is the fact
that several users can work concurrently and inde-
pendently in the development of external modules,
shaping the set of tools they use in accordance with
their particular needs.

This is possible due to the mechanism called dy-
namic linking available on the host system which
enables linking of shared libraries at run-time.
These libraries constitute the exportable compo-
nents of Geolab.

In this context, a geometric algorithm is an en-
tity which perform processing on geometric ob-
jects and produce as results geometric objects. In
principle, GeolLab is unaware of any geometric
algorithm since they are all external to the ker-
nel. In fact, the kernel only knows about a proto-
col through which it communicates with the algo-

. rithms indicated by the user.

Rather than implementing all geometric algo-
rithms as methods of classes, as is done in other
geometric workbenches, we draw a distinction be-
tween those which are well fit to be methods of
classes and those which are best regarded as ex-
ternal applications. Essentially, the separation is
based on whether the algorithm depends strongly
on the internal representation of the geometric ob-
Jects it acts on or not. A few of the positive char-
acteristics of this approach are:

e Semantic Organization

Some algorithms are able to handle objects of
several unrelated classes;
e Independence of Representations

When an algorithm is independent of a rep-
resentation, to implement it as a method of
particular class restricts its use with differ-
ent representations of the same object which
share the same repertoire of methods;

o Restrictions on the Dynamic Characterization
As said in section , it is not always desirable
to introduce new geometric objects through
class derivation. When it is more convenient
to use dynamic characterization, geometric al-
gorithms implemented as methods of those
classes require extra code to recognize this
form of characterization.

3.1 Dynamic Linking Specification

Given that at one point there may be hundreds
of algorithms in the shared libraries of external
components a (very simple) mechanism was devel-
oped for the user to specify which ones are to be
dynamically linked. This specification is done in
textual form in a file (called .geolab-menu) which
essentially describes three items per line: a string
to appear on the menu, the name of the algorithm
(function) to be called and the corresponding mod-
ule where it lies. This file is written according to a
(small) control language and it is read by a parser
built into the kernel.

Once linked, these algorithms are manipulated
by means of the protocol referred to above, which
require the algorithms to be able to:

1. inform the kernel whether they contain ani-

mation code;)

2. inform the kernel whether they are able to
handle the current selection;

3. create (empty) instances of the ezternal ob-
Jjects that they build so that the kernel can
load externally stored data files of unknown
object types;

4. organize input data from the list of selected
pure objects passed as arguments;

5. organize output data produced by the algo-
rithms so they can be passed to the kernel to
be incorporated into the list of current objects
and be displayed in the editing area;

6. cleanup after themselves when large interme-
diate structures are created (specially by com-
plex external functional modes).

3.2 Conversions between
Representations

One of the difficulties in programming items 4.
and 5. above is the need for conversion between
representations of geometric objects. Most of the
algorithms rely on the use of very specific data
structures in order to assure efficiency. Conver-
sions between representations become inevitable
once we realize that the output of an algorithm

can become the input for a number of other al-
gorithms. In order to avoid having a number of
converters quadratic on the number of representa-
tions, we established a core structure — the half-
edge, to and from which virtually all representa-
tions dealt with to this date can be converted. In
this way, the number of converters needed is linear
on the number of different representations.

Since a half-edge can easily be saved textually
by means of the inverse of the (concise set of) Euler
operators required to destroy it, and once a con-
verter of a new structure to and from a half-edge
is written, we have, as a very useful side effect of
choosing the half-edge to be the core structure,
that saving data represented in the form of this
new structure to external storage becomes trivial.

4 Other Features

The ability to include new algorithms and ge-
ometric objects together with the abstraction of
a visualization system make possible the defini-
tion of two special classes of geometric algorithms
whose purpose is to make the interaction modes of
the editor capable of expansion by external tools.

New interactive modes are installed dynamically
onto two multi-purpose buttons on the interface.
These give the user not just the ability of creation
and manipulation of geometric objects on the edit-
ing area in new ways but also the design and con-
struction of geometric algorithms that require in-
teraction (e.g. query mode range search, point lo-
cation, etc.).

5 Algorithms that have
been implemented

Some 40 algorithms have been implemented so
far in shared libraries that can be accessed by
Geolab. Rather than list all of them here, we refer
the reader to the more structured display shown in
figure 2.

Most of these algorithms are animated and
a sample of those animations can be watched

in [dRJ93b].
6 Conclusion

We have presented a concise description of some
of the main features of GeoLab which we view as
a Geometric Laboratory in Software where one (or

179

many) can experiment with geometric algorithms,
data structures and animations.

A continuously growing library of (dozens of)
such algorithms has been used as research and
teaching tools at the Universidade Estadual de
Campinas. The environment is in the final testing
stages before being made available for the com-
munity. We expect to announce, within a few
months, on the theory-net list, the availability
of the GeolLab environment for ftp.

References
[AdR] R. V. Amorim and P. J. de Rezende.
AnimA - An Environment for Algorithm
Animation. To appear.

M. H. Brown. Algorithm Animation. ACM
Distinguished Dissertations Series. MIT
Press, Cambridge, MA, 1987.

M. H. Brown. Zeus: A system for algo-
rithm animation and multi-view editing.
Technical Report 75, Digital Systems Re-
search Center, Palo Alto, CA, February
1992.

P. J. de Rezende and W. R. Jacometti.
Animation of geometric algorithms using
GeoLab. In Proc. 9th Annu. ACM Sym-
pos. Comput. Geom., 1993.

P. J. de Rezende and W. R. Jacometti.
Video: Animation of geometric algorithms
using GeoLab. In Video Review of the
9th Annu. ACM Sympos. Comput. Geom.,
1993.

L. W. Ericson and C. K. Yap. The de-
sign of LINETOOL, a geometric editor.
In Proc. 4th Annu. ACM Sympos. Com-
put. Geom., pages 83-92, 1988.

W. R. Jacometti. GeoLab — um ambiente
para desenvolvimento de algoritmos em

geometria computacional. Master’s thesis,
DCC - IMECC - UNICAMP, 1992.

A. Knight, J. May, M. McAffer, T.
Nguyen, and J.-R: Sack. A computational
geometry workbench. In Proc. 6th Annu.
ACM Sympos. Comput. Geom., page 370,
1990.

K. Mehlhorn and S. Niher. LEDA - A
Library of Efficient Data Types and Algo-
rithms. Lecture Notes in Computer Sci-
ence, 379:88-106, 1989.

P. Schorn. An object-oriented work-
bench for experimental geometric compu-
tation. In Proc. 2nd Canad. Conf. Com-
put. Geom., pages 172-175, 1990.

John T. Stasko. TANGO: A frame-
work and system for algorithm animation.
Computer, 23(9):27-39, September 1990.

[Brog7]

[Bro92]

[dRI93a]

[dRJ93b]

[EY88]

[Jac92]

[KMM+90]

[MNsg]

[Sch90]

[Sta90]

180

@ GeoLab - Version 0.930429 T
(Fiig =3 (View =) {EdiL =3 (Propertios =) gt Txis ©) (BN <) { Anmaticn. } { Compeia., }
o | %
\ Qo < Geolab: Object Attributes
: © GeoLab: Animation Setti :

.. Deletable: Line Width: Line Style:
Animation: [J Off @ On & Yes O No Normal Solid
\ Depth: Glue: Bold l;asl::d ed
ouble Das
j L1 IQIIIIIIIIIIIII so D ves E No
.;: Handles: foreground Cotor: (2] I
i ™ ond off

Background color: T I}

~ Frame Control
Selected Attributes:
String: Increment 1
Frame Delay: I NS 1_Em
490 0 0emmm{===10100 (Fooh osekecied) (SetDefauk)
L

Pointer: [} Tnanuul-atmns
X: 569.00
Y: 58.00

Figure 1: Animation of a Divide-and-Conquer Algorithm for Constructing a Delaunay Triangulation

1] GeoLab ~ Version 0.930423 h
(Flie 9) (View) (Edit @) (Properties v) (Input Tools ©) (Algorithms ©) (Animation..) { C-3muese.)
Q Algorithms < Points
o \ External Input Tools o
External Function Tools o Convex Hulls >
\ Qp Input Generators o Proximity Problems o
N Extract Components & Gaps and Covers o
\ Points o Triangulations &
Segments > Voronoi Diagrams o
Rays o
Lines o © Proximity Problems
D %E: Circles o Diameter (brute force)
Polygons o Diameter (Preparata & Shamos)
O :.\ Movie o Closest Pair (brute force)
External Classes (examples) & Closest Pair (Divide & Conquer)
@ z Settings... Closest Pair (using Voronol Diagram)
Statistics... All Nearest Neighbors (brute force)
All Nearest Neighbors (using Voronoi Diagram)
Q 'OIYQIIS Euelld Mint < ing Tree
Test and Set Simple) k..)
Test and Set Convex Tl Gaps and Cavers
winding Number “1(liest Enclosing Circle (Shamos))
Kernel : llest Enclosing Circle (T /]
Antipodal Pairs Largest Empty Circle (P &S)
Convex Hull{ 33
. v Trl latlons
Polnter SRS | Ganaric poeon © Shasistie
X: 568.00 Simple Polygon Delaunay Triangulation
Y ~16.00 StarShaped Polygon Farthest-Nelghbor Triangulation
Convex Polygon <] Voronoi Diagrams
N
(Voronol Dlagram)
Farthest—Neighbor Voronoi Diagram

Figure 2: A view of GeoLab’s interface and of many of the choices from the Algorithms Menu

