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Abstract

Let G = (S, T, E) denote a directed bipartite graph with S a set of sources and T a set of
sinks. Using vectors 8 = (s1, 82, ...sx) and t = (#1, %2, ...tx) in R* to represent the elements s € S
and t € T we can geometrically characterize the properties of G. We consider the case where
si S ti,i=1,2,...,k, (with strict inequality in at least one coordinate) if and only if the directed
edge (s,t) € E. Such an assignment of coordinates to vertices is known as a dominance drawing
of G, because all edges in the graph are geometrically characterized by the dominance relation.
We give upper and lower bounds for the dimension requirements of a dominance drawing for
bipartite graphs. We also present an asymptotically optimal algorithm to obtain a 2-dimensional

dominance drawing of a bipartite graph whenever such a drawing exists.

*Part of the work was carried out when the authors were participants of the Workshop on Layout and Optimal Path
Problems at Hawks Nest, Australia, sponsored by the Department of Computer Science, The University of Newcastle,
New South Wales, Australia
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1 Introduction

Geometric representations can be valuable tools for characterizing properties of graphs. A good
drawing of a graph can be used to display many different properties in many different ways. See [5]
for a comprehensive survey of methods that can be used to obtain good graph drawings. We will
consider graphs that represent partial orders and discuss a particular method of drawing the graphs
to geometrically display the transitive closure property of the partial order.

We begin with some definitions. Let G = (V, E) denote a directed graph with vertex set V and
edge set E = {(z,y) : z,y € V}. We say that the edge (z,y) is directed from z to y. A vertex
y is reachable from z if there is a path of one or more directed edges that lead from z to y. An
unreachable vertex is a source and an unreaching vertex a sink. A directed acyclic digraph (DAG)
is a directed graph with no vertex reachable from itself. A directed edge (z,y) is transitive if y is
also reachable from z by a path not using (z,y). A tramsitive digraph is a DAG that includes all
transitive edges. A straight line planar drawing is a two dimensional representation of a graph where
vertices are represented by points in a plane and edges are represented by straight line segments
that do not cross. A graph is planar if and only if it admits a planar straight line drawing.

A partial order P of a finite set X is a transitive and non-reflexive binary relation on X. A partial
order can be represented by a transitive digraph, G(P) on the elements of X, The dimension d(P) of
a partial order P [4] is the minimum number of linear orders whose intersection is P. There is a direct
interpretation of d(P) as it pertains to its associated graph. We can use vectors x = (z1, z2, ...2) to
represent each vertex z of G(P), so that z; < y;,i = 1,2, ..., k, (with strict inequality in at least one
coordinate) if and only if y ié reachable from z in G(P). In general we ca,ll-s-uch an assignment of
coordinates to vertices a dominance drawing, because all edges in the graph (and transitive closure)
are geometrically characterized by the dominance relation. There is a k-dimensional dominance
drawing of G(P) if and only if d(P) = k. Thus the notions of the partial order dimension and the
dominance drawing dimension are equivalent, so we will also use the notation d(G) to denote the
dominance drawing dimension of the graph G.

Hiraguchi [7] showed that d(P) < |X|/2, whilst Yannakakis [12] proved that it is NP-complete
to decide whether the dimension of a partial order is at most k, for k£ > 3.

Necessary and sufficient conditions for d(P) = 2 are given by [4]. Let G denote the complement
of an undirected version of G, that is, (z,y) is an edge of G if neither (z,y) nor (y,z) are edges
of G. Dushnik and Miller [4] proved that d(P) = 2 if and only if there is a way to orient the
edges of G to make it a transitive digraph. Graphs that admit such an orientation of their edges
are called transitively orientable. A polynomial time algorithm to recognize transitively orientable
graphs is given in [10]. However, the complexity analysis of the algorithm is not explicitly discussed.
Nevertheless, by combining the characterization in [4] and the algorithm in [10] a polynomial time
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algorithm is available to obtain a two dimensional dominance drawing of a transitive digraph if such |
a drawing is possible.

Kameda [8] defines a class of graph that always admits a two dimensional dominance drawing
and gives an algorithm that is proportional to the size of the input graph to obtain the drawing.
Kameda shows that planar DAGs with all sources and sinks embedded on the same external face so
that the sources and sinks divide the boundary of this face into two contiguous parts always admit
a two dimensional dominance drawing. In [11] Tamassia observes that Kameda’s algorithm can be
applied to the so called reduced planar st-graphs. In [11] straight line planar dominance drawings
are obtained from DAGs with no transitive edges and with a single source and a single sink.

Another class of graph that admits a two dimensional dominance drawing is the class of series-
parallel digraphs [1]. A series parallel digraph is recursively defined as, a single edge joining two
vertices, and if G1 and G2 are two series parallel digraphs then they can be composed in series by
unifying the source of G with the sink of G or composed in parallel by unifying the source of G4
with the source of G2 and unifying the sink of G; with the sink of G2. In [1] it is shown that all
series parallel digraphs admit a planar two dimensional drawing.

In the full ;;aper, we present results pertaining to transitive directed bipartite graphs.b Let
G = (S, T, E) denote a directed bipartite graph with S a set of sources and T a set of sinks, so that
all edges (s,t) are directed from a source to a sink. The transitive property of G is trivially realized
since the maximum path length in G is one. Let n = min(|S|, |T|). We show that d(G) < n, and
that there exist bipartite graphs G where d(G) = n. In [12] it is proved that deciding whether the
dimension of a dominance drawing of a transitive bipartit;e graph is at most 4 is NP-complete. We
show that a two dimensional dominance drawing for a transitive bipartite graph can be obtained
in polynomial time. The complexity of our algorithm is linear in the size of the input and is thus
optimal to within a constant of proportionality. This compares favourably with the complexity of
the algorithm in [6] [10]. At the moment the case for three dimensional dominance drawings of

transitive bipartite graphs remains open.

2 Sketch of the Algorithm

Let G = (S’, T,E) be a transitive bipartite graph with S = (s;,s3,. .-,8]5]) a set of sources, and
T = (t1,%2,.. ., 7)) a set of sinks. We use N(s) = {t : (si,t;) € E} to denote the neighbourhood
of s. Let N = {N(s) : s € S}, and let M = {N(s) = N(w) : s,w € S,N(w) C N(s)}, then
I(S,T) = N UM. Let I(Z(S,T)) denote the collection of all permutations of T, =, such that
members of each subset I € Z(S, T) are contiguous in 7. Our algorithm to obtain a two dimensional

dominance drawing of the graph G is based on the following characterization of two dimensional
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transitive bipartite graphs.

Theorem 1 The dimension of G = (S,T, E) is less than or equal to two if and only if II(Z(S, T))

is not empty.

Consider a set X and a set of subsets of X, Z. Booth and Leuker [2] present the so called PQ-tree
algorithms that can be used to determine the family of permutations of X so that every subset £ € =
is contiguous in the family of permutations. The resulting computational complexity is linear in the
size of the input. Thus it appears that an expedient solution to our problem is to compute the set M
and subsequently the set Z(S,T’) and apply the PQ-tree algorithm. However, the size of M may be
O(|S]?). This problem is not insurmountable as we can restrict our attention to a linear sized subset
of M. Consider the case where we have a maximal sequence N (51) C N(s2) C --- C N(st), then we
only need to consider the set N(sz) — N(s1). However, the task of computing this reduced subset
of M approaches the conceptual difficulty of presenting a new approach without using PQ-trees.
We present a new algorithm and skirt the problem of computing a reduced subset of M. The data
structure we use to represent the family of permutations II(Z(S, T')) is influenced by the PQ-tree,
but it is specially tailored for this problem and is much simpler.

We define a bozlist of a set T, B(T'), as the empty list, or a linked list consisting of one or more
boxes, where each box contains a subset of T', and the boxes form an exact cover of T, that is, the
union of the boxes in the boxlist is T and each element of T appears in exactly one box. If we fix
intra-box ordering of elements then a rear to front, or front to rear, traversal of B(T") corresponds
to a permutation of T'. A permutation = of T is consistent with B(T) if the elements within boxes
can be ordered so that a traversal of B(T) is equal to =. Let F(B(T)) be used to denote the set of
all permutations that are consistent with B(T). Given a graph G = (S, T, E) our algorithm begins
with a boxlist representing all permutations of T, that is, the boxlist consists of exactly one box
that contains T itself. If the graph has a two dimensional dominance drawing then the algorithm
exits with a non-empty boxlist such that F(B(T')) = I(Z(S, T)) otherwise the algorithm exits with
B(T) = 0, an empty list.

The principal operation performed on a boxlist is to add constraints to B(T) that are associated
with a neighbourhood of a source, N(s). The constraints are substrings, or intervals within the
permutpt.ioﬂs of II(Z(S,T)). Thus B(T) is constrained so that the interval associated with N(s)
will be contiguous in all permutations of F(B(T)). We show that the adding of constraints can
be scheduled so that it is easy to check whether an interval is contiguous within B(T"), and that
N (s)—N(w) is contiguous for all w such that N(w) C N(s). We maintain an overall linear complexity
by avoiding explicit sorting.

Our algorithm development is summarized in the following theorem.



Theorem 2 Given a connecled transitive bipartite graph G = (S,T,E), our algorithm returns
F(B(T)) = I(Z(S,T)). The algorithm can be implemented to run in O(|S| + |T| + |E]) time and

space, and this is within a constant multiple of optimal.
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