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1 Introduction

Relative neighbourhood graphs (RNGs) were first mentioned by Toussaint [11] as a way of describing
the structure of a set of points for the purpose of pattern recognition. The RNG on a finite set of
points fixed in the plane is a graph where two points are adjacent vertices in the RNG if they are
closer to each other than they are to any other point. A formal definition is the following:

Definition 1 The RNG on a vertez set V of fized points in the plane has an edge set E where
(psQ) €E #f, forallzeV,z#p,q,

d(p, q) < max{d(p, ), d(g, 2)}

where d(p, q) is the Buclidean norm.

A lot of work has been done on finding fast algorithms for computing the RNG but little work
has been done on characterizing them. A graph can be realized as a RNG if it is possible to place
points in the plane so that the RNG on these points gives the original graph. Urquhart [12] has
investigated some of the properties of the RNG and proves that n-cycles and wheel graphs with
seven or more vertices and any tree of degree three can be realized as RNGs but wheel graphs with
six or fewer vertices can not. We prove that all maximal outerplanar graphs can be realized as
" RNGs.

RNGs are part of a spectrum of proximity graphs which include minimum spanning trees,
Gabriel graphs, sphere-of-influence graphs, Delaunay triangulations, lune- and sphere-based g-
skeletons, and y-neighbourhood graphs. Veltkamp [13] gives an overview of these proximity graphs
and describes the y-neighbourhood graph. Further work on properties of proximity graphs has been
done by Cimikowski [3]. Supowit [10] looked at faster methods for computing the RNG on a set
of points and applied it to minimum spanning trees. Agarwal and Matousek [1] have extended the
research into three dimensions. A survey of results on neighbourhood graphs has been published
by Jaromczyk and Toussaint [6]. Dillencourt [4] has shown that maximal outerplanar graphs can
be realized as Delaunay triangulations. Bose, Lenhart, and Liotta [2] are presently doing work on
characterizing proximity trees.

Section 2 contains an alternative definition of the RNG and some preliminary lemmas and
examples; Section 3 contains the proof that maximal outerplanar graphs can be realized as RNGs.
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2 Definitions and Lemmas

Definition 1 says that two vertices are adjacent in the RNG of a set of points if no point is closer
to the pair than they are to each other. This indicates that there is an area dependent on the two
points which must be empty if they are to be connected. Thus, another way of describing the RN
is: :

Definition 2 The points p and q are adjacent vertices in the RNG defined on a verter set V of
fized points in the plane if the lune(p, q) is empty, where

lune(p, ¢) = {z € R? : d(p, 2) < d(p, q) and d(qg, z) < d(p, q)}

Figure 1: Lune (p, q) for RNG

Note that points may occur on the boundary of the lune and the two points will still be adjacent.
This way three equidistant points will be pairwise adjacent. It has been shown by Toussaint [11]
that any graph realizable as an RNG is planar. The simplest planar graphs are triangles so we look
at their representation.

Definition 3 An isosceles triangle where the edges of equal length are no shorter than the third
edge is called a pointy triangle.

Lemma 1 (Urquhart [10, Lemma 2.2]) The RNG on three points in the plane gives a triangle if
and only if these points form a pointy triangle.

Therefore, if a graph is made up of triangles, these triangles would all have to be pointy triangles
in the RNG representation. This is not sufficient, however. Take, for example, a vertex a with
neighbours a,,...,as where (a;,a;;;) is an edge for 1 < i < 5. Place ay,...,0ag On a circle around
a such that the angle Za;aa;,; = 60°. Thus triangle Aa;aa;4, is a pointy triangle but Aa,aas is
also a pointy triangle, so the RNG includes the edge (ay, ag).

A graph is maximal planar if it is planar but adding any edge makes it non-planar. Thus
maximal planar graphs are graphs whose faces are all triangles. Not all maximal planar graphs are
realizable as RNGs because the wheel graph with four vertices, or K, is not.

Definition 4 A graph is outerplanar if it can be embedded in the plane in such a way that all of
its vertices are on the same face. A graph is mazimal outerplanar if it is outerplanar but adding
any edge makes it not outerplanar.
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A maximal outerplanar graph that has three or more vertices can be embedded so that the face
which contains all the vertices is the outer face, the edges of the graph are the chords of the outer
facial cycle, and all faces except the outer face are triangles. _

The next section contains our proof that all maximal outerplanar graphs are RNGs.

3 Maximal Outerplanar Graphs

Theorem 1 Mazimal outerplanar graphs can be realized as RNGs.

Proo¥F: Look at an embedding of the graph where the face which contains all the vertices is the
outer face. We will preserve the topology of this embedding. The proof will be by induction on the
number of vertices of the given graph. To this end we will strengthen the statement of the theorem:

Theorem 2 Given an embedding of a mazimal outerplanar graph G with all the vertices on the
outer face, a fized edge e = (u,u,) on the outer face with u appearing beforeu, in a [counter]clockwise
ordering of the outer face, and a right-angled triangle T = Arst (ordered [counter]clockwise and
with right angle at s), we can represent G as a RNG so that all the points lie inside or on triangle
T, and u and u, are identified with r» and s respectively.

Proor: We will consider the case of a counterclockwise ordering. Assume G has at least 3 vertices
since the graph with two connected vertices can obviously be realized as a RNG. Let the angle at
7 be a. We may assume a < 60° otherwise we may simply embed the graph in a smaller triangle
contained in the original. Let the neighbours of u be u;, ..., u; ina counterclockwise ordering
where u; is adjacent to u;;, 72 = 1, ..., k — 1. (For the rest of the proof assume that
i=1,...,k—1 where k is the number of neighbours of u.) Identify u with » and u, with s. Create
a fan from edge (u, u;) with u at its center so that the triangles Auwu;u;,, are equally sized pointy
triangles. Let the angle that these pointy triangles make at vertex u be a; = a/(k — 1). This fan
is contained in the right-angled triangle Auu,t. All the neighbours u,, ..., u; of u are on an arc
centered at u with radius d(u,u,;). This will be called the arc of u. See Figure 2.

t

%
r=u s=u,

Figure 2: Fan of u

Now u and its k neighbours have been placed and no other vertex of the graph G is adjacent
to u. Thus the rest of G must attach to edges (u;, u;41). Let G; be the part of the graph attached
to and including edge (u;, #;11). Each G; is maximal outerplanar and inherits an embedding from
G. Note that (u;, u;41) is an edge of the outer face of G; and u; appears before u;,; in a clockwise
ordering of the outer face. Thus G consists of the subgraphs G,,..., Gi_;, the vertex u, and the
edges from u to u;,..., u.
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Let (ui,uit1,%;) form a clockwise right-angled triangle T; with the right angle at u;,; and an
angle of @; /2 at u;. By the induction hypothesis, G; can be realized as a RNG inside triangle T,
with the edge (u;, u;41) as fixed.

This completes our construction of the representation of maximal outerplanar graphs. In the
remainder of the proof we will show that this construction works, first proving that the points we
constructed are contained in T' = Arst and then proving that the RNG of the points is G.

By construction, v and its neighbours are contained in 7. It suffices to verify that the extreme
vertices of the T}’s, t; and #;_ 1, are contained in T. The angle /t,uu = a;/2 +(90° — o, /2) = 90°,
so t; is on edge (u,t) of T. The angle Zuuty_; = 90° + (90° — a1/2) < 180°, so t;_; is inside T.

See Figure 3.
t t
u u u Y,
Figure 3: Triangles T; and T} Figure 4: .Far area of T

We will now prove that the construction gives the correct RNG, beginning with a preliminary
claim. Call the area enclosed by the arc of u and the edges (uy,t) and (¢, u;) the far area of T. See
Figure 4.

Claim 1 The construction puts all vertices of G ezcept u in the far area of T and the netghbours of
u are the only points on the arc of u, in particular, if z is not a neighbour u; then d(z,u) > d(ui,u).

Proor: It suffices by induction to observe that the far area of T} is contained in the far area of T. O
We will now show that the RNG of the constructed points is in fact G.

1) All edges of G are in the RNG of the constructed points: Since an edge of G is either an
edge (u,u;), or lies in some subgraph Gj, it suffices by induction to prove that
a) (u,u;) is an edge in the RNG
b) points of G\ G; do not affect the RNG of points of G;.

Proof of a): All neighbours of u are the same distance away from u so they can at most be on
the lune of u and another neighbour. By Claim 1, all other points of G must be inside the far area
of T and are farther away from u than u;. Thus they are outside the lune(x, ;).

Proof of b): It suffices to prove that the lune of two adjacent points z and y of G; does not
contain u nor any points of G;,; or G;_;. Let y be in the far area of T; and let z be any other
point in G;. We begin by proving that

d(z,y) < d(ui, uiyq) :
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If z = u; then y is on the arc of 2 = u; and d(z,y) = d(u;, u;y1). If 2 # u; then = and y are
both in the far area of T;. Let v; be the last vertex on the arc of u;, v; # u;y;. Now Au;uwv;
is isosceles so Zu;piv;u; < 90°, making Zu;,v;t; > 90°. Since Aw;y,9;t; is obtuse, the longest
edge of Au;,qv;t; is the edge (u;41,%;). Any two points, namely z and y, in the far area of T}, are
contained in Au;v;t; so d(z,y) < d(uip1,t:). Now d(uip1,8) < d(u;, u;41) since they are two sides
of a right-angled triangle and Za;/2 < 30°. Thus d(z,y) < d(u;,%;41). See Figure 5.

u;
Figure 5: Triangle T; Figure 6: Angle yu;z

Consider u. Since y is in the far area of T}, by Claim 1, d(u,y) > d(u,u;), and since Zu; un; <
60°, d(u,w;) > d(w;,uiy1). As well, d(u;, uiyq) > d(z,y) as proven above, so d(u,y) > d(z,y)
showing that u does not affect the adjacency of any two points in G;.-

Consider a point z of G;_; or G, as placed in T;_, or T}, respectively. We can assume that
z is in the far area of T;_, or T;,,. We will prove d(z,y) > d(u;, u;+1). Since this is symmetric with
respect to z and y, we can assume that z € G;_; and y € G;. See Figure 6. Look at Zyu;z:

Lywiz = 360° — Lti_yuwiui_q — LU quu — LUy — LUt + Lywgt; + Lty uiz
> 360° — 90° — (90° — &, /2) — (90° — @, /2) — @, /2 > 90° + oy /2
> 90°.

Thus Ayu;z has an obtuse angle at Zyu;z, making d(y, z) > d(y,u;) and since y is in the far area
of T;, d(y, u:) > d(w;, u;41) giving d(y, z) > d(w;, u;4,) forally € G; and z € G;_; or z € Gyy1.

As proved above, d(z,y) < d(w;,u;11). Thus, for any z € G;_; U Gi44, d(y, 2) > d(=,y), and 2z
is outside the lune(z, y).

2) No other edges are in the RNG: Let z and y be non-adjacent vertices of G. We will show
that ¢ and y are not adjacent in the RNG.

If 2 = u then by Claim 1, y must be in the far area of T and since y # u,...u;, we have
d(z,y) > d(z,u;). If z and y are both in G}, then by induction, the RNG of G; has no edge joining
z and y. Otherwise z € G;, y € Gj, i # j. It suffices to consider y € G;;;, \ G; and = # u;4,.
Then y is in the far area of T;,, and Zyu;4 12 > 90°, as proved above. So d(y,u;41) < d(z,y) and
d(2,u;41) < d(z,y), which means that u;,, is in the lune(z,y). Thus z and y are not joined by an
edge in the RNG.

Therefore, since we have given a construction for the vertices of a maximal outerplanar graph
G such that the RNG on those points is exactly G, all maximal outerplanar graphs are realizable
as RNGs. a
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4 Discussion and Further Results

Maximal outerplanar graphs have been shown to be representable in several geometric ways: El-
Gindy proved that any maximal outerplanar graph is a visibility graph (see [8] for an exposition);
Dillencourt [4] showed that maximal outerplanar graphs can be realized as Delaunay triangulations.
We have just shown that maximal outerplanar graphs can be realized as RNGs. This result is most
closely related to Dillencourt’s because the RNG of a given set of points is always contained in the
Delaunay triangulation of that set of points. Thus is it natural to ask whether a single construction
could prove both results. However, Dillencourt [5] has shown that a maximal outerplanar graph
with four or more ears cannot be realized simultaneously as a RNG and as a Delaunay triangulation
on the same set of fixed points.

Using the same construction, we can also show that maximal outerplanar graphs are Gabriel
graphs [9]. (See Matula and Sokal [7] for the definition of the Gabriel graph.)
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