216

Shortest Paths for a Two-Robot Rendez-Vous

Erik L. Wynters *

Abstract

In this paper, we consider an optimal motion planning
problem for a pair of point robots in a planar envi-
ronment with polygonal obstacles. We seek a pair of
paths upon which the robots can travel to move from
their initial positions to positions in which they are
able to communicate. In order to communicate, the
robots need to be visible to one another. We give
efficient algorithms for minimizing either the sum or
the maximum of the two path lengths.

1 Introduction

Imagine that two mobile robots are working simulta-
neously but separately on related tasks. Suppose that
they must “rendez-vous” periodically to share infor-
mation which one robot has acquired which may be
useful to the other robot in carrying out its assigned
task. Depending upon the model of communication
used, the robots may need to travel to the same loca-
tion to share information, or they may only have to
move so that they are within a prescribed distance of
one another or so that they are visible to one another.

We assume that the robots use a line-of-sight com-
munication system. Therefore, we seek a pair of
rendez-vous paths upon which the robots can travel
to become visible to each other. Our goal is to find
optimal solutions to two variations of this problem.
In one, we wish to minimize the sum of the lengths
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of the rendez-vous paths; in the other, we wish to
minimize the mazimum of the path lengths.

Given the situation described above, our goal is to
find a pair of paths for the robots upon which they can
travel to reach a configuration (a pair of positions)
that permits them to communicate. Furthermore, we
require the paths to be optimal according to one of
two distance measures: we seek to minimize either
the sum of the path lengths or the maximum of the
path lengths.

In addition to its application to robot motion plan-

‘ning, our work is applicable to the design of commu-

nication networks. Consider the problem of estab-
lishing a microwave link between two sites that are
not visible to each other. Given that we wish to min-
imize the total cost of routing cables from the sites
to the bases of the towers and that such costs are
proportional to the total length of cable needed, our
methods can be used to find optimal locations for the
two towers (the towers must be visible to each other
for a microwave link to be established).

The methods described here complement some of
our earlier work. In [4] we discuss how to find optimal
paths for two robots that must maintain line-of-sight
communication while moving. In that paper we start
with robots that are able to communicate and ensure
that communication is not broken during the motion.
In this paper, we start with robots that are not able to
communicate and move them to establish communi-
cation. Together, these results allow us to find paths
that bring the robots quickly to positions in which
they can communicate before continuing on to their
destinations, maintaining communication.

In the next section , we give an algorithm that finds
optimal rendez-vous paths according to the “min-
sum” criterion. In Section 3 we discuss the “min-
max” version of the problem.



2 The Min-Sum Problem

In this section we define the Min-Sum version of the
problem more formally and show how to solve it.

We assume that the robots are modeled by points
in the plane and that the obstacles to visibility are
disjoint simple polygons. We define freespace to be
the set of all points that are not in the interior of
any obstacle. A wvisible rendez-vous is an ordered
pair of points that can see one another in the sense
that the line segment connecting them lies entirely in
freespace. A line-of-sight through a point p in direc-
tion @ is a line segment obtained by extending rays
. from p in directions § and —# until each cannot be
extended further without intersecting the interior of
an obstacle. We define a path to be a connected one-
dimensional subset of freespace. Finally, we denote
the length of a path 7 by u(x).

We wish to solve.the following problem.

The Min-Sum Visible Rendez-Vous Problem

Instance:  An initial configuration (s;,s2), and a
set S of disjoint simple polygons with a total of n
vertices.

Requirement:  Find a pair of pathé (w1, 72) from
(81, 82) to a visible rendez-vous (t;,t2) such that the
total length of the paths u(;) + u(72) is minimized.

It is clear that, in order for a visible rendez-vous
to be optimal, it must correspond to a line-of-sight
through an obstacle vertex v as shown in Figure 1;
otherwise, at least one of the two paths could be
shortened (we are assuming that the robots are not
visible to one another in the initial configuration).
Furthermore, given an orientation of a line-of-sight
I through v, the best paths from (s, s2) to a visible
rendez-vous on [ consist of shortest paths from s; and
from s2 to .

The following lemma shows that not every orien-
tation of a line-of-sight ! through v is a candidate
line-of-sight for the optimal rendez-vous.

Lemma 2.1 If an optimal rendez-vous (t1,13) corre-
sponds to a line-of-sight l, then | contains an edge of
the visibility graph.

Proof. Suppose that ! is a line-of-sight that passes
through only one obstacle vertex v. Then [ is free to
“rotate” about v (the length of ! is adjusted during
the rotation so that it extends as far as possible at
each end without intersecting the interior of an obsta-
cle). We show that there exists a direction of rotation
that improves the value of the objective function, i.e.,
it decreases the optimal combined distance from s,
and from s, to a visible rendez-vous on .
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Suppose that we have an optimal visible rendez-
vous (t1,t2) on [ and an optimal pair of paths
from s; to t; and 73 from sy to t2. We examine the
case in which ¢; and ¢ are in the relative interior of
1 and the distance d; from ?; to v is greater than the
distance ds from 2 to v.

The following discussion is illustrated in Figure 2.
Let z; be the last “turning point” on w; prior to
reaching ¢;, and let z; be the corresponding turn-
ing point of #3. For 7, and 7, to be optimal, seg-
ments z;¢; and zsf; must be perpendicular to .
Let a; and a; denote the lengths of these segments.
If we rotate ! through a small angle in the direc-
tion that reduces the distance from z; to I, then we
get a new visible rendez-vous (t},t5) and new dis-
tances aj and a). From the figure, it is clear that
aj + a5 < (ay — b1) + (a2 + b2). We also have that
b1 > b since d; > d3. Thus, a] +a), < a; +a3. Since
the topology of the optimal paths will not change in
some neighborhood of the current orientation of I,
small rotations in the direction shown will improve
the value of the objective function.

A similar analysis shows that there exists a direc-
tion of rotation that will improve the value of the
objective function if dy < d; or d; = d5. The same
result holds if one or both of ¢; and ¢, is an endpoint
of ! instead of a point in the relative interior of .

Therefore, ! cannot. be optimal if it is not “pinned”
by two or more vertices. Thus, the optimal line-of-
sight must lie along an edge of the visibility graph
and must contain its two endpoints. O

The lemma suggests the following algorithm.
The Min-Sum Visible Rendez-Vous Algorithm

1. Construct a shortest path map using s; as the
source for ¢ € {1,2}.

2. Construct the visibility graph G = (V, E) of the
set of polygons S.

3. For each extension edge ¢ € E,

a. Find the line-of-sight ¢’ obtained by extend-
ing e in freespace as far as possible in both
directions.

b. Find the length of the shortest path 7, from
s1 to €’ and the length of the shortest path
w2 from s, to e’ using the shortest path
maps.

c. Compare pu(71) + p(w2) to the total length
of the best pair of paths found so far and
update if necessary.
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Figure 1: A visible rendez-vous corresponds to a line~6f-sight through an obstacle vertex.

Figure 2: Rotating [ in the direction that reduces the distance from z; to I, reduces the total length of the
optimal paths to a visible rendez-vous on [.



4. Return the best pair of paths found.

The correctness of this algorithm follows from
Lemma 2.1. The time and space complexity of the
algorithm is analyzed below.

Step 1 takes O(n?) time and O(n) space using the
algorithm of Reif and Storer [7).

Step 2 takes O(E + nlogn) time and O(E) space
using the algorithm of Ghosh and Mount [1].

In Step 3 we first find, for each edge e of the visi-
bility graph, the endpoints of the line-of-sight ¢’ that
we will refer to as the ertensionedge of e. This takes
constant time, using the representaion of the visibility
graph obtained in Step 2. Then we find the lengths
of the shortest paths from s, and from s, to ¢/. This
takes O(n) time as follows.

Given an extension edge ¢’, we locate one endpoint
p of ¢ in the shortest path map and calculate its
geodesic distance from s;. This takes O(log n) time,
using standard point location techniques [6]. We save
P as our initial guess of the endpoint of the shortest
path from s; to ¢’. Since p is located on the boundary
of an obstacle, it lies on the boundary of a cell ¢ in
the shortest path map. .

We continue by traversing the boundary of ¢ un-
til we reach another point r where ¢’ intersects the
boundary of ¢. We calculate the geodesic distance of
r from s; the same way we did for p, and compare
this distance to the one obtained for p. If r is closer
to s;1, then we have a new candidate for the endpoint
of the shortest path from s; to ¢’.

Before proceeding, we consider the open line seg-
ment between p and r. Since this portion of e’ lies
completely in ¢, the shortest path from s; to e’ can
end at a point ¢ on this segment only if the shortest

path from the root of ¢ to ¢’ is a segment perpendic-

ular to ¢’ that intersects ¢’ at q. If such a segment
exists, the geodesic distance of its endpoint ¢ from
s1 can be calculated in constant time and compared
with that of the current candidate for the endpoint
of the shortest path from s; to e’. If the compari-
son is favorable to g, it becomes the new candidate
endpoint.

We continue to traverse adjacent cells that are
pierced by ¢’ and update our representation of the
best candidate path from s; to ¢/. When we reach
the other endpoint of e/, we will have determined the
length of the shortest path from s; to e’.

After carrying out this process for both s; and s,,
we will have determined the sum of the lengths of the
shortest pair of paths 7; and 7, that permit a visible
rendez-vous on e'. The total time needed to traverse
the boundaries of the cells pierced by ¢’ is linear in the
number of obstacle vertices since the shortest path
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map is a planar subdivision of freespace. Therefore,
Step 3, iterating over all edges of the visibility graph,
takes O(En) time.

In summary, we have the following theorem.

Theorem 2.1 The Min-Sum Visible Rendez-Vous
Problem can be solved in O(En) time and O(E) space.

3 The Min-Max Problem

" Now we turn to the Min-Max version of the problem.

The Min-Max Visible Rendez-Vous Problem

Instance:  An initial configuration (s;,s;), and a
set S of disjoint simple polygons with a total of n
vertices.

Requirement:  Find a pair of paths (7, 72) from
(s1,82) to a visible rendez-vous (t;,t2) such that the
maximum length of the paths max{u(m), u(72)} is
minimized.

In the Min-Max problem, Lemma 2.1 no longer
holds. In Figure 3, each of the indicated paths has the
same length and together they form an optimal min-
max pair. The line-of-site ! containing the optimal
visible rendez-vous (¢;,%2), however, is not “pinned”
by two vertices. Thus- we must now consider paths
to a line-of-sight  that passes through only a single
vertex and calculate the optimal orientation of such
a line.

Given a line ! (an infinite line, not a line-of-sight)
that passes through a vertex v, we find the optimal
orientation of ! by solving O(n?) subproblems. In
each subproblem, we choose vertices z; and z, and
assume that they are the last turning points on the
shortest paths to [ from s; and s;, respectively. With
this assumption, the length of the shortest path from
s; to l is the sum of the geodesic distance from s; to
z; and the Euclidean distance from z; to . Only the
second term varies with the orientation I(6) of I.

It is easy but tedious to solve for the optimal ori-
entation 6* of ! using elementary algebra. Several
cases arise because the shortest path from z; to I*
may intersect I* at a point in the interior of freespace
or it may be determined by the intersection of I* and
an obstacle edge. The number of possible cases is
bounded by a fixed constant, however, so the solu-
tion can be found in constant time.

We ignore the obstacles when solving for the op-
timal orientation of I. Thus we must check whether
the solution we find is feasible. Let I* = 1(*) and let
(t1,12) be the optimal visible rendez-vous on I* using
z; and z; as final turning points. For feasibility, we
must ensure that each of the pairs of points (t;,12),
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Figure 3: An optimal min-max visible rendez-vous may occur at an orientation of a line-of-sight / that is not

“pinned” by two or more vertices.

(21,%1), and (z2,t3) corresponds to a visibility seg-
ment, i.e., a line segment lying entirely in freespace.
If the first test fails, i.e., if (;,%2) is not a visi-
ble rendez-vous, then !* intersects an obstacle in the
interval between ¢; and ¢,. In this case, the optimal
feasible orientation 8 of | occurs when t;(0) and t2(9),
the closest points of I(f) to z; and z, are aligned
with v and another obstacle vertex. In other words,
t1(0) and t2(0) lie on an extension of a visibility graph
edge. We find visible rendez-vous paths of this form
separately using the method described in Section 2.
On the other hand, if ¢; is not visible to z; for some
i € {1,2}, then our choice of z;’s was not optimal, i.e.,
z; is not the last turning point on a shortest path from
s; to t;. In either case, if the feasibility test fails, we
drop the current pair of z;’s from consideration.
With these discussions as a prelude, we now de-
scribe the algorithm for the Min-Max problem.

The Min-Max Visible Rendez-Vous Algorithm

1. Construct a shortest path map using s; as the
source for i € {1,2}.

2. Construct the visibility graph by finding the vis-
ibility polygon of each vertex.

3. Find the best visible rendez-vous on an extension
of a visibility graph edge as in Step 3 of the Min-
Sum Algorithm using the Min-Max optimization
criterion.

4. For each ordered triple (z;,v, z2),

a. Find the Min-Max value of the best pair
of paths (w1, 72) from s; and s2 to a line !
through v such that z; and z, are the last
turning points on 7; and 7s.

b. Check the feasibility of the visible rendez-
vous (t1,%2) determined by (m,w2), using
the visibility polygons of z,, z3, and v.

c. If the current triple is feasible, compare
max{u(m), u(72)} to the best value found
so far, and update if necessary.

5. Return the best pair of paths found.
This algorithm leads to the following theorem.

Theorem 3.1 The Min-Maz Visible Rendez-Vous
Problem can be solved in O(n3logn) time and O(n?)
space.

Proof. The algorithm given above solves the problem
correctly as discussed above and can be implemented
to run in O(n3logn) time using O(n?) space as fol-
lows. Computation of the visibility polygons and the
visibility graph in Step 2 takes O(n?) time and O(n?)
space using the algorithm of Welzl [8]. Steps 1 and
3 take O(En) time just as they did in the Min-Sum
case. In Step 4, we solve O(n3) subproblems. In
each subproblem, the cost of performing the feasibil-
ity check dominates the cost of other operations and
can be done in O(log n) time using binary search on
the visibility polygons about z;, z2 and v. O



-4 Extensions and Open Prob-
lems

We have shown that the Min-Sum and Min-Max ver-
sions of the Rendez-Vous problem can be solved ef-
ficiently. Now we give several extensions and open
problems.

One extension to the problems discussed here is
that in which we allow “Steiner Points” in the vis-
ibility link between two agents. In other words, we
could require that the agents move to a configura-
tion in which they can be connected by a path of link
distance no greater than k for some fixed k. This
version of the problem models the situation in which
we want to connect two stations by microwave towers
and several towers in succession may be used to relay
messages between stations. The Min-Sum version of
this problem, in which we minimize the sum of the
cable lengths needed to connect the stations to the
first and last towers, can be solved by combining our
techniques with known methods for determining the
link distance between two edges of the visibility graph
[3].

Another extension of our problem is that in which
we require that the agents not only see each other but
also be within distance D of each other in order to
communicate. It is not yet clear whether this extra
requirement increases the complexity of the problem.

If we require that agents need to be within distance
D to communicate, without requiring that they be
visible to one another, the problem becomes one of
finding the best placement of a circle of radius D so
that there exist optimal obstacle-avoiding paths from
the initial positions of the agents to two points on
the circle. In this case we call the desired pair of final
positions an optimal prozimity rendez-vous.

When D = 0 the problem is trivial since any point
on the shortest path between the initial positions is
optimal for the min-sum version of the problem, and
the “midpoint” of the shortest path is optimal for the
min-max version of the problem. We call the opti-
mal meeting place in this version an optimal physical
rendez-vous.

Finding an optimal physical rendez-vous becomes
more interesting if the number of agents is greater
than two and we wish to minimize the maximum
" geodesic distance from an initial position to the point
where the physical rendez-vous takes place. In this
case, we have a generalization of the well-known 1-
center problem. In the Euclidean plane this problem
is called the smallest-enclosing-circle problem [6] since
the solution is the center of a circle of minimum radius
that contains all of the intial locations. The solution
in the plane can be found in linear time using a vari-
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ation of Megiddo’s linear programming algorithm [2].
In a simple polygon, the 1-center or “geodesic center”
can be found in O(nlogn) time [5]. The question of
whether there exists an efficient algorithm for finding
the geodesic center of a set of points among polygonal
obstacles, however, seems to be still open.

Extending our visible rendez-vous results to the k-
agent case for k > 3 seems to be challenging, as well.
Even in the 3-agent min-sum version, the local opti-
mality criterion that the line-of-sight connecting two
agents must be an extension of a visibility graph edge
no longer holds. It is not yet clear whether the prob-
lem is discrete or continuous.
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