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Generalized Kernels of Polygons with Holes*

Sven Schuierer!

Abstract

Let O be some set of orientations, that is, @ C [0°,360°). We
consider the consequences of defining visibility based on curves
that are monotone with respect to the orientations in . We call
such curves O-staircases. Two points P and g in a polygon P are
said to O-see each other if there exists an O-staircase from ptogq
that is completely contained in P. The O-kernel of a polygon P
is then the set of all points which O-see all other points. It can
be shown that the O-kernel of a simple polygon can be computed
in time O(nlog|O|). In this paper we show how to compute the
esternal O-kernel of a polygon in optimal time O(n +|0}) and
how to combine the two algorithms to compute the O-kernel of
a polygon with holes in time O(n? + n|0|).

1 Introduction

Visibility problems play an important role in computational ge-
ometry. Apart from the usual line segment visibility several
other notions of visibility have been investigated in the past
years: staircase visibility [4,11), rectangular visibility [7,13,15]
and periscope visibility [5]. In this paper we introduce a new def-
inition of sight called O-visibility. It is based on the framework
of restricted orientation converity which was first considered by
Rawlins [17].

Restricted-orientation convexity tries to bridge the gap be-
tween Euclidean convexity and {0°,90°}-convexity. Recall that
aset Sis {0°,90°}-convez or orthogonally convez if the inter-
section of S with any axis-parallel line is connected. {0°,90°}-
convexity is a well-studied area [4,7,12,14,20,23]. Rawlins and
Wood generalize the idea of {0°,90°}-convexity and develop
the theory of restricted-orientation convezity or O-converity
(17,16,18,19]. Instead of considering only axis-parallel lines they
allow lines with orientation in some fixed set ©. A set S is called
O-convez if the intersection of S with any line whose orientation
isin O is connected. Note that restricted-orientation convexity
encompasses both {0°, 90° }-convexity (when O = {0°, 90°}) and
Euclidean convexity (when O is the set of all orientations) as
special cases.

The framework of {0°, 90° }-convexity spawns a new definition
of visibility called staircase visibility or {0°, 90°}-visibility which
is based on {0°,90°}-convex paths. Two points p and ¢ in a set
S are staircase visible from each other if there exists a {0°,90°}-
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convex path from p to ¢ that is completely contained in S. Stair-
case visibility has been considered by Reckhow and Culberson [4]
and Motwani et al. [11]. Both papers deal with covering polygons
with the minimum number of {0°, 90°}-starshaped sets; that is,
sets that contain one point p such that all other points are stair-
case visible from p. In the same way, O-convexity gives rise to a
new definition of visibility we call O-visibility [21]. O-visibility
again encompasses {0°, 90° }-visibility and Euclidean visibility as
special cases.

One of the central visibility problems is the computation of the
kernel of a polygon. The kernel of a set S is the set of points that
see all other pointsin S. For Euclidean visibility the computation
of the kernel is a well-studied problem for which several optimal
algorithms have been developed [3,9], whereas the correspond-
ing problem for {0°,90°}-visibility has not been considered. 0-
visibility offers us the opportunity to develop an algorithm that
computes the Euclidean kernel as well as the {0°,90° }-kernel
depending on the input parameter © and that is competitive
in both cases. The algorithm we present is a first step in this
direction (see also [21]).

Visibility questions can also be seen as reachability questions.
Consider the problem of “guarding” a polygon with one robot
whose motion is restricted in such a way that the robot’s path
must bé monotone in some set of orientations. In order to decide
whether it is possible to guard a polygon and, if so, where to
place the guard, we consider the O-kernel of a polygon; that is,
the set of points that O-see all other points.

The rest of this paper is organized as follows. We start off with
a precise definition of O-convexity and O-visibility in the next
section. In Section 3 we turn to the computation of the @-kernel
of a polygon with holes. In contrast to Euclidean visibility, the

-kernel is not necessarily empty if there are holes. Since holes
are polygons themselves, there exist polygons which can be seen
completely from their exterior. This observation gives rise to
the definition of the ezternal O-kernel of a polygon which, in
turn, can be employed to compute the O-kernel of a polygon
with holes. This is considered in Section 4.

2 Basic Definitions for Restricted
Orientation Convexity

If we are given an oriented line / in the plane, we define its
orientation to be the angle it forms with the z-axis and denote
it by ©(l). Of course, we can speak in the same way of the
orientation of a line segment or a ray. As already stated in the
introduction the O-convex sets can now be defined as follows.

Definition 2.1 Let O be a subset of (0°,360°). A set C C E?
is O-convex if IN C is connected, for all lines | with o) eo0.

In order not to have to deal with orientations that are greater
than 360°, we assume from now on that the addition and sub-



223

Figure 1: The definition of O-visibility.

traction of two orientations is done modulo 360°. The first thing
to note about the definition of O-convexity is that we can as-
sume that @ is symmetric with respect to 180°, that is, if the
orientation @ is in @, then a set is O-convex if and only if it is
O U {6 + 180°}-convex. We denote the orientation 6 + 180° by
6-1. So there is no loss in generality if we assume that, for all
6 € O, we also have §~! € O. Since O always contains either
both orientations @ and #~! or none of them, we use the nota-
tion |O| to denote half the cardinality of O. Furthermore, we
will only specify the orientations in [0°,180°) to define a specific
O though it should be kept in mind that O also always contains
the opposite orientations in [180°, 360°).

We say a range (0y,62) is O-free if (61,62) N O = 0. A range
(61,62) is called a mazimal O-free range if (61,02) is O-free and
there is no other range (8}, 65) that is also O-free and contains
(61,62). If 6 is some orientation in [0°, 360°), the mazimal O-free
range of 0 is the maximal O-free range that contains 6 or if such
a range does not exist, the empty set.

If p and ¢ are two points in the plane, we denote the line
segment between p and ¢ by 57. It can be shown that if O(pq) €
O and (0,, 82) is the maximal O-free range of pg, then a curve S
from p to g is O-convex if and only if S is {81, 8,}-convex [17].
Note that if ©(pg) € O, then the only O-convex curve from p to
qis Pq. _

From now on we will call an O-convex path an O-stairsegment.
An O-stairsegment that consists of a finite number of edges is
called an O-staircase. Two points p and ¢ in a set P are O-
wvisible from each other or O-see each other if there exists an
O-stairsegment from p to ¢ that is completely contained in P
(see Figure 1).

As we already mentioned, we are interested in the O-kernel
of a set P which is the set of points in P that O-see all the
other points in P and which is denoted by O-kernel(P). We are
mainly concerned with polygons. A simple polygon is the union
of a simple closed curve and its interior such that the simple
closed curve consists of (a finite number of) line segments (called
edges) and no two consecutive edges are collinear. If we want to
refer to the curve that surrounds a simple polygon P, we speak
of the boundary of P which is denoted by OP. The ezterior of P
is defined to be the set of points of JE? that do not belong to P
and is denoted by ext(P). We define a polygon P with holes to
be a simple polygon Py called the enclosing polygon of P that
contains a number of disjoint simple polygons Hy, ..., Hi in its
interior called the holes of P. The exterior of P is defined as
union of the exterior of Pg and the interior of the holes of P. P
is also called mulitiply connected in this case.

% = {0°,90°}-kernel(P)

D = Holes of P

Figure 2: The O-kernel of P is disconnected and not O-convez.

3 Computing the O-Kernel of a
Polygon

In the following it is our main aim to show how to compute the
O-kernel of a polygon. As far as simple polygons are concerned
the following theorem holds [22].

Theorem 3.1 The O-kernel of a simple polygon with n vertices
can be computed in time O(nlog|O| + |0)), for finite O, given
O(|O|log |O|) preprocessing time to sort O.

It is based on the following observation about the O-kernel of
a simple polygon [22].

Lemma 3.2 If P is a simple polygon and O a set of orienta-
tions, then -

(i) O-kernel(P) = (\yeo 19}-kernel(P),

(ii) O-kernel(P) is O-convex and connected.

3.1 The O-Kernel of a Polygon with Holes

If we allow a polygon to have holes, the situation changes consid-
erably. The O-kernel(P) is neither necessarily connected nor O-
convex any more as shown in Figure 2. Furthermore, we lose the
Intersection Lemma as Figure 3 illustrates; hence, we need a dif-
ferent approach to compute the O-kernel of a multiply connected
polygon. Since holes can be viewed as polygons themselves, we
are now also concerned with ezternal visibility. This notion gives
rise to the definition of the ezternal kernel of a polygon.

Definition 3.1 Let P be a polygon in the plane and O some set
of orientations. We define the external kernel of P as the set of

{0°}-kernel(P) N
{90°)-kernel(P) #
{0°,90°}-kernel(P)

{0°}-kernel(P) {90°}-kernel(P)

Figure 3: {0°,90°}-kernel(P) = 0 is not the intersection of
{0°}-kernel(P) and {90°}-kernel(P).




224

all points that belong to O-kernel(IE? \ int(P)) and denote it by
O-kernel.z:(P).

It is not very surprising that the O-kernel of a multiply connected
polygon P is the intersection of the O-kernel of the enclosing
polygon of P intersected with the external kernels of the holes
of P. This is shown in the following lemma.

Lemma 3.3 If O is a set of orientations and P a multiply
connected simple polygon with enclosing polygon Q and holes
H,...,Hp, then

O-kernel(P) = O-kernel(Q) N () O-kerneleze(H:).

i=1

Proof: omitted. =]

The above lemma provides the tool to compute the O-kernel
of a multiply connected polygon. Since we know how to compute
the O-kernel of the enclosing polygon, we only have to show how
to compute the external O-kernel of a polygon which is done in
the following section.

3.2 The External Kernel of a Polygon

We allow the set of orientations @ to consist of a finite number
r of closed intervals (or ranges) (a1, 51}, ..., [ar, Br]. Before we
continue, we need to introduce some more notation. Let @ be
some orientation in @. We consider the coordinate system that
has a -oriented z-axis and a (8 + 90°)-oriented y-axis. For a
polygon P and a point p on the boundary of P, we say that
p is a (local) -mazimum of P if there exists a neighbourhood
N of the connected component of P with the f-oriented line
through p such that there is no point in 6PN N that has a larger
(8 + 90°)-coordinate than p.

Given an oriented line ! we denote the halfplane to the left of !
by h*(l) and the halfplane to the right of by A~(l). An oriented
tangent t of P is an oriented line such that ¢ intersects dP and
that P is completely contained in h*(t). Obviously, there is only
one tangent to P, for any given 6 € [0°,360°). We denote it by
#(6). The halfplane to the left of ¢(6) is denoted by h*(8) and,
similarly, the halfplane to the right by A~ 9).

We start with a simple observation (see also [17]).

Observation 3.4 No point which lies between a pair of tangents
to P that are parallel to some 8 € O belongs to the external O-
kernel of P.

We now turn to characterizing the components of the external
kernel of a simple polygon P.

Lemma 3.5 If P is a polygon in the plane, O a set of orien-
tations with |0 > 2, and 6, and 62 are two adjacent* orien-
tations in O, with §; < 02, then h=(6;) N h'(0;1) belongs to
O-kernel.z(P) if and only if

1. ey = t(07) NP and ez = t(62) N P are two (maybe degen-
erate) edges of P that meet in one vertez of P, and

2. P = 0P\ (e1 U e2) contains neither a local convez ;-
mazimum nor a local convez f5-minimum.?

INote that adjacency, in particular, implies that (61,62) is O-free.
24 local §-extremum v is convex if v is a convex vertex of P.

o-free

u2 U

@ o)

t2
e2

he = A= (6;1) / P
/ P o~
t(61)
Yt 7 7
Y
hy Nha 2' hy = h=(61)
t(65")

Figure 4: The external kernel of a polygon

2%

Figure 5: The arrangement of 2r parallel tangents to P.

Proof: omitted. u]

With Observation 3.4 and the above lemma we are able to
decide if a point p that is contained in a slab between two parallel
O-oriented lines or in a wedge enclosed by two tangents with
adjacent orientations belongs to O-kernel.z:(P) or not. There
are no other points in IE? \ int(P). To see this note that there
are r O-oriented pairs of tangents to P and the arrangement of
the slabs between these pairs is topologically equivalent to an
arrangement of r lines that meet in one point (see Figure 5).

The above approach obviously only works if |O] > 2. So it
remains to look at O-kerneleoe(P) if O = {6}. As expected
the situation simplifies considerably and we get the following
characterization.

Lemma 3.6 IfP is a simple polyon in the plane, O = {0°}, and
p is below the lowest point of P, then p belongs to O-kernel.z:(P)
if and only if P contains no reflez minima.

3.3 Computing the External Kernel

In order to develop an efficient algorithm to compute
O-kernel,,,(P) we need to bound the number of components
that it can maximally consist of. The following lemma shows that
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Figure 6: Lower bounds on the number of components of the
eziernal kernel of a polygon.

the external O-kernel of a polygon has only a constant number
of components independent of the cardinality of O or the size of
P. In the subsequently presented algorithm we will make crucial
use of this fact.

Lemma 3.7 Let P be a simple polygon. The mazimum number
of components O-kernel.z:(P) consists of is (i) 2 if |O]| = 1, (i1)
4 if |0] = 2, (3) 3 if |O] = 3, and (iv) 2 if |O] > 3, and these
bounds are tight.

Proof: To see that the external kernel of a polygon can have
as many components as claimed refer to Figure 6. :

In the first case the claim is an immediate consequence of
Lemma 3.6 since either all points in the halfplane below #(0°) be-
long to O-kernel.z:(P) or none of it. The same, of course, holds
-for the halfplane above ¢(180°). The proof of the second claim is
as easy to see since the two (-oriented slabs that contain P di-
vide the plane into at most four quarterplanes. By Lemma 3.5 a
quarterplane belongs either completely to the external O-kernel
of P or not at all. Hence, O-kernel..:(P) consists of at most
four components. ‘

Note that Condition 1 of Lemma 3.5 implies that, for each
component w of O-kernel.z:(P), there is a vertex ¢ of the convex
hull conv(P) of P whose adjacent edges have an interior angle
which is less or equal to the O-free range of the two tangents
that enclose w, that is, in Figure 7 ag + f2 < a =8, ~ 6;.

We now turn to proving the third claim. The proof is by
contradiction. So suppose that |[O] = 3 and there are at least four
components wy, w2, w3, and wg of O-kernel..:(P). Suppose the
enclosing tangents of wy, . .., w4 span the O-free ranges (a1, £1),
(a2, B2), (a3, B3), and (a4, B4). As we noted above there are four
vertices v; of conv(P), 1 < i < 4, with an interior angle o; that
is less or equal to f; — a;. Since |O| = 3, the closure of the

ot

w=h~(61) Nh=(6;")
6!

Figure 7: o; +t a2 < a and B; + fr < @

four ranges cannot cover all of [0°, 360°), that is, U?zl[a;,ﬂ,-] #
(0°,360°).

Now conu(P) is a convex, say m-gon, whose sum of interior
angles is (m — 2) - 180°. Since i, 0 < T8 6 — i < 360°
the remaining (m — 4) interior angles have to sum up to (m -
2)-180° = 7, 06 > (m — 2) - 180° — 360° = (m — 4) - 180°
which contradicts the fact that all the interior angles of conv(P)
are less than 180°. Hence, O-kernel,;:(P) has at most three
components if |O| = 3. -

Before we treat the case }O| > 4, we need a technical state-
ment. We say a wedge w is a (6;,08;)-wedge if (6;,6) is O-
free and w is the wedge between h~(f;) and h=(65'). Let
a = 02 —0;. We claim that if a (6;, 6;)-wedge w and its opposite,
the (471,85 1)-wedge w™?, belong to O-kernel.z¢(P), then all the
remaining interior angles of conv(P) are greater than 180° — a.

To see this note that conv(P) is contained in the parallelogram
Q = h*(61) N h*(82) N A*(671) N h*(671) with sides that are
parallel to 6; and 8, and that Q has the (6,85 )-apex p and the
(67!, 62)-apex ¢ in common with cony(P) as shown in Figure 7.
The line segment 7¢ partitions Q into two triangles T, and T5.
Let a; (@2) be the angle formed by the edge of cons(P) in T}
incident to p (g) with 57 and B; (B,) defined analogously for T,
(see Figure 7). Elementary geometry yields that a; + a3 < a
and B + B> < a. Hence, the remaining m; interior angles ¥;,
i=1,...,my, of the part of conv(P) in T} satisfy the inequality

my
Zv;+02m1 -180°

i=1

and the analog holds for the m, interior angles &;, i =1, ..., mo,
of the part of conv(P) in T>. Since all v; and 6; are less than
180°, we, in particular, have v; > 180° — « and §; > 180° — a.
Now if there are three components of O-kernel.z¢(P), then
we have three disjoint, O-free ranges (a:, §;) such that there are
three vertices of cony(P) with interior angles o; < f;—a;, 1 <i <
3, by Lemma 3.5. If two of the ranges are opposites to each other,
say ap = a:l'1 and £ = ﬁ{'l, then o3 > 180° — o, by the above
argument. This contradicts the fact that [, 5] U {3, B3] does
not cover 180°. Hence, (ay,51), (@2,52), and (a3, Bs) are not
opposites of each other. Since |O| > 4, we have that o, +02+03 <
180° and, hence, there are three vertices in cony(P) whose sum
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Figure 8: [O(ej+1)~%, ©(e:)] is contained in [0y, 62].

of interior angles is less than 180°. If we denote the remaining
interior angles of conuv(P) by %, i = 1,...,m— 3, we have the
following inequalities

m-3 m=3

S <1800+ Y ¥

i=1 i=1

3
(m—2)-180° = Y o+

i=1

and, hence, Z:’_‘__';s ¥ > (m—23)-180° which again contradicts the
fact that conv(P) is a convex polygon, that is, that v < 180°.0

To compute the external kernel we now proceed as follows. We
assume that P is given as a list of n edges and that O consists
of r ranges [a1,1), .-, [ar, Br] which are given as a sorted ar-
ray. First we note that the vertices where the O-tangents touch
the boundary of P belong to the convex hull of P. Hence,
we compute the convex hull of P which can be done in linear
time [1,6,8,10]. Suppose that conuv(P). consists of the (counter-
clockwise oriented) edges e1, ..., ém and vertices vy, ..., vm With
v; € &i Neig1 (em+1 = €1).

By Lemma 3.5 there is a vertex v; in conv(P), for each com-
ponent h~(8;)Nh~ (65 ") of O-kernelez:(P), such that O(e;) and
©(ej41)~! are contained in [, 82] (see Figure 8). As in the proof
of Lemma 3.7 it can be seen that there are at most four vertices
v; on conv(P) that satisfy [O(ej41)~!, O(e;)] € (61, 6-], for some
O-free range (0;,62) and 0;,0, € O. Wesay v; isa candidate
vertez of (6y,02) in this case.

The idea of the algorithm is to find these candidate vertices
and then to check if the conditions of Lemma 3.5 are satisfied.
Since we have to test for §;-maxima and 6,-maxima at most four
times and this can be done in time linear in the number of edges
of P, we need at most additional O(n) steps once we have found
the candidate vertices.

In the following we show how to compute the candidate ver-
tices of conu(P) in time O(n+r). The idea is to step through the
edges of conv(P) and the ranges of O simultaneously. If we have
a pointer to the ranges in O that keeps track of the orientation
of the currently processed edge e;, it can be checked in constant
time whether [©(e;+1)~", ©(e;)] is contained in a maximal O-free
range. We say a range r = [a, 8] corresponds to orientation 8 if
(@, B) is O-free and f is the least upper end point of a maximal
O-free range such that § < 8. More precisely, the algorithm can
now be described as follows.

Algorithm External O-kernel
Let (a1, 1) be the O-free range that corresponds to
O(e1);
for each edge e¢; of conv(P) do
if [O(ei+1)™", O(ei)] € (ai, Bi)
then output v; as a candidate vertex for (ai, 5i)

end if
if O(es41) < Bi
then let (aiy1, Biv1) := (@i, )
else step through O to the O-free range

(ci+1,Bi41) that corresponds to ©(eit1) (*)
end if
end for;

Since we look at each range of @ only once in Step (x), the
algorithm obviously needs time O(n+r). In this way we compute
the at most four candidate vertices of conv(P) together with the
O-free ranges they belong to. As we already mentioned above,
we need only additional linear time to check if the conditions of
Lemma 3.5 are satisfied. This proves the following theorem.

Theorem 3.8 The erternal O-kernel of a polygon with n ver-
tices can be computed in time O(n+r), for a set of orientations
O consisting of r ranges, given O(rlogr) preprocessing time to
sort the ranges of O.

4 Computing the O-Kernel of a
Polygon with Holes

With the above result, Lemma 3.3, and Theorem 3.1 we can com-
pute the O-kernel of a multiply connected polygon P with enclos-
ing polygon Q and holes Hy,...Hmn by computing O-kernel(Q)
and intersecting it with O-kernel.z:(H;), for 1 < i < m. We
now want to obtain an estimate on the time needed for this pro-
cedure. Note that we have to restrict ourselves to finite O. So
suppose that Q consists of ng edges and each H; of n; edges. Let
n = ng+ Y .z, ni be the number of edges P. The first step is
to compute O-kernel(Q) and O-kernel.z¢(H;), for 1 < i < m,
which requires time

O(nolog|O| + > ni +m|O)). ~

i=1

With the scan-line algorithm by Chazelle and Edelsbrunner
(2] we can intersect m polygons with all together n edges in
time O(nlogn + (the number of intersections of the edges)).
Since the external kernel consists only of at most eight edges
and O-kernel(Q) consists of at most no edges, this takes time
O((no+m)log(no+m)+(the number of intersections)). Let k be
the number of intersections. We want to obtain an estimate on k.
k consists of two parts, k; and k», where k; counts the intersec-
tions of O-kernel(Q) with the external kernels of the holes and &,
counts the intersections among the edges of the external kernels
of the holes. Since an edge e of O-kernel..:(H;) is O-oriented
and O-kernel(Q) is O-convex by Lemma 3.2, 00-kernel(Q) in-
tersects e at most twice. Hence, ky is at most O(m). The
O(m) edges of the external kernels of the holes have at most
O(m?) intersection points. Hence, k¥ = O(m?). Note that Fig-
ure 2 shows that [, ¢;<m O-kernelez:(H;) may, indeed, consist
of O(m?) components. Therefore, these bounds are optimal. We
have proven the following theorem.

Theorem 4.1 The O-kernel of a multiply connected poly-
gon with n vertices and m holes can be computed in time
O(n(log |O| + logn) + m(|O| + m)) time, for finite O.



Note that this result is optimal for small O, that is, if |0] = O(m)
by our above observation on the number of components and the
fact that the computation of the O-kernel of a multiply connected
polygon can be shown to have a lower bound of Q(nlogn) [17].

5 Conclusions

We have introduced a new definition of sight that encompasses
both the usual notion of visibility based on straight line seg-
ments as well as staircase visibility. It is based on the theory of
restricted orientation convexity. The O-kernel of a simple poly-
gon can be computed in time O(n log|O]). In order to compute
the kernel of a multiply connected polygon, we introduce the ex-
ternal O-kernel of a polygon and give an O(n+r) time algorithm
to compute it where r is the number of ranges in ©. Combining
the two algorithms, the O-kernel of a multiply connected polygon
can be computed in time O(n? + n|Q)).

There are several open problems in connection with these re-
sults. The algorithm to compute the external kernel of a polygon
is clearly optimal, but we conjecture that the efficiency of the al-
gorithm for the O-kernel of a multiply connected polygon can be
improved upon.

We have always assumed that the set of orientations that we
use for our visibility considerations is given in advance. If we
drop this assumption, the following question can be seen as a
natural generalization of the problem if a polygon is starshaped:
Given a polygon P, for which orientations ¢ € [0°, 360°) is P {6}-
starshaped or {6}-kernel(P) non-empty? Though it seems that
the techniques developed so far should be helpful in the solution,
it is an open problem how fast this question can be answered.
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