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Abstract

Given a rope whose one end is fixed at a point on the boundary of a convex polygonal obstacle
called the azis point, the internal grazing area is defined as the set of points internal to the obstacle
that can be reached by the rope. A O(n?) time algorithm to locate the boundary point to tie the
rope that corresponds to the minimum internal grazing area is presented. This problem has many
engineering applications in environmental studies such as pollution control and toxic spills.

1 Introduction

Problems dealing with visibility of polygons have been studied by many researchers in computational
geometry [1-3]. A variation of the visibility problem called the External Grazing Area Problem (or
EGAP) asks for the following: Given a convex polygonal obstacle Q of n vertices and a rope of fixed
length L, find a boundary point (the axis point) such that when one end of the rope is fixed at the
axis point, the area that can be swept (grazed) by the rope outside the polygon is a maximum. In [4],
it is established that the axis point yielding the maximum grazing area is given by one of the vertices
of the polygon which results in an O(n?) algorithm for locating it. Two types of external grazing areas
were identified; (a) simple grazing area and (b) general grazing area. An optimal O(n) time algorithm
to solve EGAP for the case of a simple grazing area is obtained in [4].

A problem closely related to the EGAP is the minimum internal grazing area problem (MIGAP).
MIGAP problem asks for locating the axis point on the boundary of the polygon so that the total
grazing area swept by the rope internal to the convex polygon, is minimized. In this paper, it is proved
that the solution to MIGAP lies on one of the 5n bondary points, n of which are the original vertices
and the rest are created using simple rules. A discussion of these rules is presented. An O(n?) algorithm
is developed to compute the location of the axis point.

2 Preliminaries

If the length of the rope is smaller than the smallest edge of the polygon, then the solution to MIGAP
lies at the vertex of the smallest internal angle which is a trivial observation (Figure 1a). On the other
hand, if the length of the rope is larger than the largest diameter of the polygon, then all the boundary
points give rise to the same solution to MIGAP which is the area of the polygon (Figure 1b). But, for
the case when the rope is smaller than the largest diameter and larger than the length of the smallest
edge, the solution to MIGAP is nontrivial (Figure 1c). We, therefore, consider the case of Figure Ic.

Let us consider the convex polygon shown in Figure 2. As the axis point moves along the boundary
of the polygon, the internal grazed area changes as a function of the position of the axis point along the
boundary of the polygon. Let us call this function grazing area function and note that it is continuous.
But the first derivative of the function is possibly discontinuous at some boundary points. We introduce
new vertices at the locations of the axis points corresponding to these possible discontinuities in the
slope of the function and call them steiner vertices. The new set of vertices consisting of the original and
the steiner vertices are such that all order derivatives of grazing area function are continuous between
any two adjacent ones.

The discontinuous changes in the slope of the grazing area function can possibly occur in the following
three situations; (i) when the axis point crosses over from one edge to an adjacent edge through an
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original vertex (Type I; Figure 3a), (ii) when the circular boundary of the grazing area crosses over an
edge from the inside to the outside of the polygon (Type II; Figure 3b), and (iii) when the circular
boundary of the grazing area crosses over from one edge to an adjacent one through a vertex (Type III;
Figure 3c). Type II vertices can be obtained by drawing lines parallel to the edges of the polygon at a
distance of the length of the rope and identifying the points of intersection of the parallel line with the
edges of the polygon. There will be 2n such intersections. These points of intersections are the type II
vertices. Some of these axis points will correspond to the circular sector crossing the extended edges
of the polygon. These axis points should be excluded. Type III vertices can be obtained by drawing
circles of radius r and with the center at each original vertex and identifying the pairs of intersections of
the circle with the edges of the polygon. When the axis point is at these intersection points, the circle
will cross over from one edge to an adjacent one through a particular vertex. There will be 2n such
intersections, but some them can be excluded as they intersect the extended edges of the polygon. Thus,
the number of possible discontinuities in the slope of the grazing area function and the corresponding
number of axis points that need to be tested for local minimum in the grazing area function is utmost
5n. Let us index the new set of vertices in the clockwise order in which they appear and call them
vertices. '

Figure 2 shows that the axis point is at X and the circle is intersecting the polygon at Oy, O,, O3
and Oy4. Let us consider the variation of the area as a function of the position of the axis point along an
edge between two adjacent vertices. Without loss of generality, let us assume that the edge on which
the axis point is located is the z axis.

The boundary of the grazed area consists of circular arcs and boundary chains of the polygon. The
circular arcs along with two radial lines originating from the axis point form a circular sector. Similarly,
two radial lines originating from the axis point along with the boundary chains of the polygon form
polygonal sectors. For example, for the polygonal object shown in Figure 2, when the axis point is on
the z axis at X, the grazed area consists of circular sectors, X0,0; and X030, and convex polygonal
sectors, X AG, XO2EO3 and XO4CB. Let us call the area of the 5t* circular sectors in the clockwise
direction A%(z). Similarly, let us call the itk polygonal sectors Ab(z). With these definitions, the
grazing area function, A(z) can be written as:

i=n. 1=nyp

A(z) = ) Ab(z) + Y Ab(a) (1)

i=1 i=1

where z is the axis point location on the boundary of the polygon. n, and n, are the total numbers of
circular and polygonal sectors, respectively. :
Lemma 1: The area of the circular sector along with the two neighboring right triangular polygonal
sectors (formed by the radial edge of the circular sector, part of the edge which the circular arc cuts and
the perpendicular line from the axis point to that edge) one on each side of the sector, as a function of
the axis point along the boundary, has its second derivative always negative.
Proof: Consider the circular sector, X 010,, shown in F igure 4. It is noted that Figure 4 also shows
the partial neighboring polygonal sectors, X 014 and 02 P, X. The area of the circular sector, X0,0,,
denoted as A% (z) is given by: _

4i(z) = Br? ®)
where r is the radius of the rope, and 8 is given by:

B = ((2n—4)% - T — cos™! (Er'-) - cos™! (h'—:l)) (3)
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where h; and h;y; are the perpendicular distances from the the axis point to the the edges of the
polygon which form the circular sector, (i.e.), GA and FE respectively and are shown in Figure 4. The
area P,020,AX includes the circular sector 01X 03 and the two neighboring right triangular sectors,
01X A and O, X P,. Writing it as a function of h; and h;y; and denoting it as AET(hg,h;H),

Apr(hishisr)

Area 01X — Area AP, X + Area 0,0,X + Area 0P X
h?tan(¢;) — h*tan(a;) + Br? + hZ, tan(dir1)

= hy/r? - h? — h¥tan(a;) + Br? + hiv1y/7? - A%, (4)

Between any two adjacent vertices, it can be proved by similar triangles arguments that h; and hi4y
are linear functions of z which is the location of the axis point along the boundary. Thus, it is obvious
that K;dz=dh; and K;y1dz=dh;,,, where K; and K i+1 are real constants. Using the above linear

2 A8
relationship and Equation 4, the second derivative, d—'ffz-.}‘—(r—), can be shown to be:

dzAZ'T(x) : 2 2’1,(1’) -2 2h,‘+1(:t) :
L - k=D otan(as) | - i :
dz? H V1% — hi(z)? * an(a ) . VT2 = hip1(z)? <0

due to the fact that K; and Ky, are real and the terms under square root are always positive as 7 > h;
and r > h;yy, since 7 is the length of the hypotenuses of the right triangles, X P,0, and XO,P,. Hence
the lemma. O

It is noted that the right triangular sectors already considered in the above analysis should be
discounted in the following analysis of the convex polygonal sectors.

(5)

Lemma 2: The area of a polygonal sector as a function of the boundary location of the axis point has
its second derivative always negative.
Proof: Consider the itk polygonal sector P,EM,X as shown in Figure 5. Area of the sector P,EM,X
as a function of z can be written as:

B () + Ap(z)
Area MiEX + Area MyEX

hirr@NVP = hint @R + hisa(e) — hena(a)? 6)

where I = (z-2;)2 + 32 I, hiyy and hit2 are the perpendicular distances from the axis point
to the two bounding edges of the polygonal sectors, EF and ED and are shown in Figure 5. (z;,¥;)
are the coordinates of the point E. There can be additional polygonal area sandwiched between these
two triangular sectors, but their area remains constant as axis point moves along the edge till one of
the triangular area goes to zero or reaches a maximum value. The axis point corresponding to such a
situation is a steiner vertex. As the additional sandwiched polygonal area does not vary with z between
the two adjacent vertices under consideration, it does not affect the variational problem and therefore,
is not considered. Therefore, functional arguments based on Equation 6 are made to show that the
second derivative of the grazing area function is negative. Consider Figure 5. Let us denote the point
of intersection of EQ; with z axis as the temporary origin. Asz — 0, hiy; — 0. Then A}';1 (z) given
by Equation 6 goes to zero. Similarly, when | — hit1, Area Ap (z) given by Equation 6 goes to zero.
Additionally, the A} (z) is always positive and has only two extrema. With these observations about
the function A} (z), it is obvious that it should appear as shown in Figure 6 with one extrema within
the interval £ — 0 and ! — h;,;. Similar arguments can be posed for the function Ap,(z). From

2 Al
Figure 6 and Equation 6, it is obvious that g—:f;—(z—) < 0. 0.

Il

p(z)

]
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Any other possible circular sector or convex polygonal sectors is a simpler case of the ones that are
discussed under Lemma 1 and Lemma 2.

Theorem 1: The grazing area function between two adjacent vertices exhibits only a maximum.
Proof: From Lemmas 1 and 2, it follows that for every Ai(z) and Ab(z), the second derivatives
w.r.t. z are negative. Moreover, notice that the grazing area function given by Equation 1 is a sum
of functions given by Equations 4 and 5. Therefore, it is easily seen that the second derivative of the
grazing area function is negative, when the axis point is between any two adjacent vertices. if there
is an extremum for an axis point between two adjacent vertices, it can only be a maximum. In other
words, the minimum of the grazing area function occurs at the vertices of the polygon. O

Theorem 2: The axis point yielding the minimum grazing area function can be computed in 0(n?)
time.

Proof: From Theorem 1, it is proved that the local minima of grazing area function are given by
the vertices of the polygon. Therefore, it suffices to search only the values of the grazing area function
corresponding to the vertices to obtain the global minimum. The grazed area corresponding to every
vertex can be computed in O(n) time as there are O(n) intersections of the circular boundary of the
grazed area with the convex polygon and hence there are O(n) circular sectors and convex polygonal
sectors. There are utmost 5n vertices to be checked and therefore, the global minimum of the grazing
area function can be obtained in utmost 5n2 time. O.

3 Conclusion

We proved that a minima of the internal grazing area occurs when the axis-point is on the vertex of the
polygon. There are utmost 5n vertices and the rules to obtain them are simple and are given. Based on
these observations, an algorithm with utmost 5(n2) time for computing the minimum internal grazing
area is presented. It will be interesting to develop a subquadratic algorithm for MIGAP.
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Figure 1. Two trivial and one nontrivial cases of a MIGAP
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Figure 2. A convex polygon along with thr grazed area showing the intersections of the convex
polygon with circular boundary of radius r and center X (z,0) located on the boundary of the polygon.
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Figure 4. Circular sector along with its two neighboring right triangular sectors.
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Figure 5. Polygonal sector. £O; and BA intersect at the origin (0,0).
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Figurfa 6. .Grazing area function, A%(z), for a general polygonal segment as a function of position
of the axis point along the boundary of the polygon.



