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Abstract.

In this paper we describe algorithms for optimizing the angle of vision through the gap between two
objects, when the viewpoint belongs to a given trajectory.
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1. Introduction

We begin with some definitions and notations. The convex hull of any set S will be denoted
conv(S). If S is compact and connected, and X is a point not in conv(S), the ray emanating from
X, tangent to S, and having S to its right (resp. left) will be called the left tangent (resp. the
right tangent) and denoted Ix(S) (resp. rx(S)), the reference to S omitted whenever possible.

Let P, @1, ..., Qk be disjoint geometrical objects in the plane (all supposed to be compact and
connected), and let T be a set of points, usually some kind of curve, that we will call the trajectory
(refer to Figure 1). We say that P is seen from a point X € T, X ¢ conv(P), when no point of
TUQ1U---UQx belongs to the interior of conv(P U X) — conv(P). More intuitively: no visual
ray from X to P is intercepted by any “obstacle” Q; or by T itself. -

We consider the following two general problems:

Problem 1. Let Tp be the set of points of T from which P can be seen. Is Tp empty? If Tp # 0
from which point of Tp will the object P be seen with maximum angle?

Problem 2. Let us assume that k = 2 (refer to Figure 2) and that conv(Q; U Q,) intersects
neither P nor T . Let T” be the set of all points X € T admitting rays r, x, ro x, respectively
tangent to @, and @2, both emanating from X, such that: a) Q; and Q, are linearly separated by
both r1 x and r3 x; b) The convex angle ['(X) defined by ry x and r2 x contains P in its interior
and Q; U Q: in its exterior; ¢) No point of T belongs to the interior of I'(X). More intuitively, TP
is the set of points of T" such that the angle of vision through the gap between Q; and Q, contains
P. Is T? empty? If T? # 0 what point X € TP provides a maximum I'(X)?




The complexity of these problems depends on:
The trajectory (the set from which we look);
The object P (the set at which we look);
The Q;’s (the obstacles through which we look).

Problem 1 and Problem 2 are very similar but the crucial question differs. In the first problem,
once Tp is obtained we concentrate on looking at P. Here the main question is for a given trajectory
(Tp) to maximize the angle from whose apex a given object is seen. Some cases of this problem
are described in [1] and [2]. In [3,4] a fixed-size angle is given, but the apex is free on the plane,
the goal being to locate that apex as near as possible to the object. In this paper we focus our
attention on Problem 2: once TP is obtained, we can forget P, and we must optimize the vision
through a gap from a given trajectory (TF).

2. Previous results: looking through a segment

To look through a segment AB (or through the points A and B) is the same thing as to look at the
segment AB. As a consequence the basic tool for the two types of problems described in preceeding
paragraphs is the same, as we shall see below. We briefly review in this section some results about
looking at a segment. Omitted proofs are mostly from elementary geometry. Computational issues
are described in [1,2]

The set of points to the left (resp. right) of the ray AB will be denoted L(AB) (resp. R(AB)).
For simplicity we will restrict our attention to one of these half planes.

The locus of points of L(AB) that see AB with a given angle a is a circular arc C with extremes
A and B. In L(AB), from points inside the region R bounded by C and AB, the segment AB
is seen with an angle greater than «, the angle being lesser than & from points outside R. Inside
L(AB), when a point X moves away from R along a ray starting at a point of C the magnitude of
the angle AX B is a strictly decreasing function. B

These facts give us a strategy for finding the points of a given geometric object P that see
AB with the largest angle (Fig. 3): “inflate” a circular arc over AB until P is touched for the first
time (when working in both half planes one has to deal with two such arcs). We state this more
precisely for future reference:

Lemma 1. If P is a circle, a straight line, a ray or a segment, the point of P (occasionally two
points) that see a given segment AB with maximum angle can be found in time O(1).

Lemma 2. If P is the union of n segments (a n-polygonal, a general n-polygon), the points of P
that see a given segment AB with maximum angle can be found in optimal time O(n).
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Lemma 3. Let AB be a segment and let P be the portion inside L(AB) of a straight line, a
segment, a ray, or a polygonal convex towards AB. The magnitude of the angle of vision of the
segment AB from points of P is a max-unimodal function (unimodal with maximum).

Lemma 4. Let P be a convex polygon with n sides and let AB be a segment in the exterior of
P. The point of P (occasionally two points) that see AB with maximum angle can be found in
O(lgn) time.

The bound in Lemma 2 can be achieved by iterating the optimization on every segment; the
optimality comes from the output size (Fig. 4). By Lemma 3 this argument is no longer valid for
convex polygons, binary search giving Lemma 4.

3. Looking through two polygons

Let Q;, Q2 be disjoint polygons (or polygonals) with a total of n vertices and let T be a trajectory
not intersecting conv(Q; U @2). Let X € T be a point not belonging to any line defined by the
prolongation of a side of conv(Q;) or conv(Q2). If X can see through the gap between Q; and
@3, the tangent rays r; x, ro x defining such angle will touch @, and @ in single points A4; and
Az. In some nelghborhood of X all the points of T' can see through the gap between Q; and Q2
exactly through the segment A; A;. This fact suggests the following general algorithm:

Algorithm THROUGHPOLYGONS

Input. Two disjoint polygons (or polygonals) Q;, Q2 with a total of n vertices , and a trajectory
T not intersecting conv(Q; U Q2).

Output. The angle of maximum vision from points of T through the gap between Q; and @2, and
the list of points where it is reached (when existing).

1 Find C; = conv(Q;) and C; = conv(Q2). If C; N Cz # 0 return the message “No gap” and
exit.

2 Find the inner common tangents to C; and C, and determine the subset T” of T of the points
that can see through C;, Ca. If TV = () return the message “No visible gap from T” and exit.

3 Decompose T" in subzones T3, ..., T; such that from every T; the vision through C}j, C, is the
vision through a fixed segment with an extreme in every polygon.

4 Using the techniques from the preceeding section, optimize the vision from every T,
maintaining the value a of the maximum obtained angle and the list L of the points where it
is reached.

5 Return « and L, and exit.
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Details and running time depend on the specific types of geometric objects. For the sake of
clarity and future convenience, we will focus on the case T is an straight line (Fig. 5). In this
situation Steps 1 and 2 can be completed in time O(n). In Step 3, we extend the sides of C;
and Cy, intersect with T, and sort the obtained points. All of this can be accomplished in time
O(n), because we are merging two sorted lists. We obtain O(n) subsegments of T'; in each one the
optimization is done in constant time. So we have:

Proposition 1. Let Q,, Q- be disjoint polygons or polygonals with a total of n vertices, and let
s be a straight line or segment not intersecting conv(Q1 U Q2). The points of s with maximum
angular vision through the gap between Q, and Q2, and the magnitude of such an angle, can be
obtained in O(n) time.

With the same technique, but different costs for computing intersections and in Step 4, we
obtain the following results (for details, see [2]):

Proposition 2. Let Q,, Q2 be disjoint polygons or polygonals, with a total of n vertices, and let
P a polygon or polygonal with m vertices. The points of P with maximum angular vision through
the gap between Q; and Q,, and the magnitude of such an angle, can be obtained in O(nm) time.

Proposition 3. Let Q,, Q. be disjoint polygons or polygonals, with a total of n vertices, and let
P be a convex m-polygon containing Q, and Q,. The points of P with maximum angular vision
through the gap between Q, and Q,, and the magnitude of such an angle, can be obtained in
O(m + nlgm) time.

Proposition 4. Let Q,, Q, be disjoint polygons or polygonals, with a total of n vertices, and
let P be a convex m-polygon in the exterior of conv(Q1 U Q2). The points of P with maximum
angular vision through the gap between Q, and @2, and the magnitude of such an angle, can be
obtained in O(nlgm) time.

Some special cases can be handled with ad hoc techniques. For example, in the situation of
Proposition 1, if Q; and @, are convex, the first two steps can be done in-logarithmic time. But
to beat the O(n) bound we need the following lemma:

Lemma 5. Let f; : [a,}] — R (i = 1,...,k) max-unimodal continuous functions, and let
f : [zo, zk] — R be piecewise defined in such a way that

(I)a<zo<---<zp<b;

2 fllzi-nzl=f i=1,...,k

(3) 3¢ € Rt such that (z — z;)(fiy1(z) —fi(x)) <0in[z;—e,zi+¢] i=1,... k—1.
Then f is max-unimodal in [z, z}). :

Proof. At z; the function f transforms from f; to fi+1. Condition (3) means that f;,; crosses f;
at z; in “top-down” manner: fiy; > f; immediately to the left of z; and fi+1 < fi immediately
to the right of z;, so excluding the possibility that f has a local minimum at z;. As the fj are
max-unimodal, f is continuous and without local minimum in (%0, k), and so f is max-unimodal.
Q.E.D.

Now let’s consider two convex polygons C; and Co, as in Fig. 5. Without lost of generality
we can suppose that they are both in the half plane y > 0 and that the common inner tangents
determine a segment s in the z-axis for looking through the gap. The angular vision from s through
every segment with one extreme in each polygon (“inside the gap”) is a max-unimodal function, by
Lemma 3. When a point moves on s from left to right, such functions are piecewise concatenated
in the manner of Lemma 5, so we have the following

Lemma 6. Let Cy, C, be convex polygons and let s be a segment, a ray or a straight line leaving
both polygons in the same associated half plane. The angular vision from s through the gap
between C; and C, is a max-unimodal function. :

Now we can take the sides halving the chains of the polygons facing each other, extend them,
and intersect with s. The values of angular vision from the obtained points allow us to discard at
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least half of one chain. The process is repeated a logarithmic number of times, each step having
logarithmic cost. So we have

Proposition 5. Let Cy, C; be convex polygons with a total of n vertices, and let s be a segment,
aray or a straight line not intersecting the interior of conv(C,UC>). The maximum angle of vision
from s through the gap between C; and C,, and the points where it is reached, can be obtained
in O(lg? n) time.

The argumentation preceeding the last lemma and proposition can be rephrased mutatis
mutandis if instead of a segment we take a polygonal chain convex towards the gap. This gives us
the last result in this section:

Proposition 6. Let Cy, C; be convex polygons with a total of n vertices, and let be D a convex
polygon with m vertices, not intersecting conv(Cy U C3). The maximum angle of vision from
D through the gap between C; and C,, and the points where it is reached, can be obtained in
O((lgm+1gn)lg n) time.

4. A glance at an application

We conclude this paper by sketching how the former techniques apply to a problem arising in the
context of [5], where unoriented ©-maxima, a generalization of classical maxima of a set of points
(or vectors), were introduced. A detailed description, and additional related results will appear in

[6].

Let S be a set of n points in the plane, and let P ¢ S be a point inside conv(S). When we
look from P, the maximum angle « free of points of S (that will be considered as obstacles) can
be clearly obtained in O(nlgn) time. In the reverse situation we are free to move in the plane,
and we look at P with an angle as large as possible, free of any obstacle; the set of values is upper
bounded by o and we can approximate indefinitely that value by appreaching P (in a suitable
direction). But what if we must remain outside S, say in the exterior of .conv(S)?

The first thing we observe is that it suffices to optimize the vision from points on the boundary
of conv(S): if from a point Q, strictly outside of conv(S), P is seen within some angle free of
obstacles, from the point where the segment PQ intersects conv(S) a greater value is obtained.

Figure 6

Now we take any line r through P, not containing any point of S, that separates in two
subsets S; and S3, having convex hulls C; and Cj respectively (Fig. 6). Let u, v be the segments
of common outer tangents bridging C; and C; (that is, the sides of conv(S) crossed by r). After
optimizing the vision from u and v through the gap between C; and C,, we rotate r until a first



point is surpassed, then S;, S5, Ci, C;, u and v are updated and we iterate the process. As the
optimization is the dominant step, Proposition 5 gives us the following

Proposition 7. Let S be a set of n points in the plane, and let P ¢ S be a point inside conv(S).
The points of the plane that can see P with maximum angle, free of any point of S, and the value
of such an angle, can be obtained in O(nlg? n) time.

This strategy can be easily adapted for different definitions of outside S, or to the case we are
looking from trajectories or regions.
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