252

A Simple Algorithm for Maintaining the Center of a Planar Point-Set

Reuven Bar-Yehuda *

Alon Efrat t

Alon Itai ¥

June 29, 1993

Abstract

We give a simple deterministic algorithm for main-
taining the center of a planar point set, in any convex
distance function, when points are added to the set.
Our algorithm requires O(log®n) time and O(1) space
per insertion. In the case of L, norm, our algorithm
improves the worst case (O(log* n)) of Eppstein’s al-
gorithm [3].

Our algorithm can be implemented for other pur-
poses. Using out algorithm with the paradigm sug-
gested by Eppstein [3], we can solve the two center
problem with respect to any convex distance function
(to be defined below) in time O(n? log® n). We can also
find the farthest point Voronoi Diagram with respect
to any convex distance function in time O(nlogn).

1 Introduction

The problem of finding the smallest enclosing disk
for a planar set of points has been well treated in lit-
erature. It goes back to Sylvester in 1857. See [6] for
a historical survey. Nimrod Megiddo was the first to
give a linear time algorithm for this problem [6]. Since
this problem can be stated as a mathematical program-
ming problem with linear constraints and convex ob-
ject function in IR?, (see for example [11]) most of the
linear programming algorithms can handle this task,
(c.f [5] for an expected linear time algorithm).

Let F be a closed convex shape, containing the ori-
gin of the XY coordinate system. We will assume that
F is a simple shape, in the sense that its boundary can
be represented as a collection of a constant number of
algebraic curves, each of constant degree. The norms
Ly, for any k, is a special case of this definition, when
F is the unit ball in this norm.

*Department of Computer Science, The Technion
tA.E. was with the Department of Computer Science, The

Technion, and is now with the School of Mathematical Sciences,

Tel-Aviv University. alon@cs.technion.ac.il
{Department of Computer Science, The Technion

Notation 1.1 Given a conver set F we denote by
F,(r) = rF+gq, that is, F scaled by r and then trans-
lated to q. Fy(r) is a homothet of F of radius r and
center q. F denotes F, reflected on both azes, and
F,(r)=rF+4.

Definition 1.1 The convex distance function between
q1 and go induced by F 1s

d(41,qz)F = min{a € R : q1 € qu(a)}~

Notation 1.2 Giwen a planar set of points S, let
SEH(S) denote the smallest homothet of F contain-
ing S, let p(S) denote its radius, and the center of S
is the center of SEH(S).

Here we present a simple algorithm for maintaining
the center of a planar point-set, under any convex
distance function, when points are given in a semi-
dynamic fashion. That.is, points are added to the
set, and after each such insertion, we wish to find
the center of the new set. Eppstein [3] gave an algo-
rithm for dynamically solving three dimensional linear-
programming problem,-and one of his applications was
to maintain the center in the L, norm of a planar point
set, in expected time O(log® n loglogn), and worst-
case O(log* n) time.

In this paper we improve this worst case, for any

convex distance function. We present an algorithm
that performs an insertion in O(log® n) time using O(n)
space.)
Our algorithm can easily be modified to require
O(log® n/loglog n) time and O(nlogn) space. Using
a data structure suggested by Mehlhorn et al. [9]
the space can remain linear without sacrificing the
O(log® n/ loglog n) time bound.

Results similar to ours can be achieved using the re-
cent result of Kirkpatrick and Snoeyink [4]. A related
problem is the two-center problem. In this prob-
lem, one tries to cover a planar set of points S by two
disks such that the radius of the larger among the two
disks in minimized, or the sum of radii is minimized.
Agarwal and Sharir [1] have solved the first problem in
O(n?log®n), using the parametric search technique of

Megiddo [7]. Eppstein [3] improved their solution to
O(n?log® nloglogn) expected time. In the worst case,
his algorithm requires O(n2log*n). He constructed
the arrangement of lines dual to the points in S, tra-
versed this arrangement and calculated for each cell
the radii of the corresponding two circles determined
by this cell. With the same idea but using our algo-
rithm for maintaining the center of a point-set, we can
deduce an O(n?log® n) time deterministic algorithm
for solving this problem. Our algorithm is significantly
simpler than the one proposed by Agarwal and Sharir,
and can also be implemented as well for any convex
distance function.

2 Statically Finding SEH

Let S'= {p1,---,pn}, be a set of points in the plane,
and let Qg(r) = ﬂ?z_l F,, (7).

Claim 2.1 r> p(S) f Qs(r) #0.

In order to find p(S) we first compute which edges
appear on 0Qs(r) when r = r* is very large, (r® = co
for all practical purposes). Then we reduce r while
evaluating Qs(r). We stop the process when Qg(r) is
reduced to a single point. Qs(r) (if not empty) can be
thought of as a convex polygon whose boundary edges
are parts of the boundary of F, (see fig. 1), where
for any A C R?, OA denotes its boundary. Every
connected component of Qs(r) [OF,,(r) is called an
F-edge. Henceforth, the term homothet will refers to a
homothet of F.

y23

V32

Figure 1: Qs(r) (the dotted area) is the intersection
of homothets of F when F is a disk. Note that the
trajectories are straight lines.

253

2.1 Some facts about homothets and F-
polygons

The proofs of the following facts appear in the full
paper.

Fact 2.2 The boundaries of any two homothets inter-
sect at most twice.

Definition 2.1 For any two points p;,p; € S define
the trajectory

Vi j = U an,-(Ot)ﬂaf‘pj(a),

a>0
1 which is a simple path in IR>.

Fact 2.3 Any two trajectories (determined by two
pairs of noints, not necessarily all four distinct) in-
tersect in at most one point.

Fact 2.4 When r is reduced, no F-edge appears be-
tween two consecutive F-edges. Hence the number of
F-edges is a nondecreasing function of r.

Note that when we know the identity of the three re-
maining F-edges, we can readily find SEH .

Definition 2.2 Let r be fized. Let e(r) be an F-edge
of Qs(r) and let v'(r) and v2(r) be its endpoints. r’ is
a tentative critical radius of e(r) if the trajectories of
its two endpoints meet at v/, i.e., v'(r') = v2(r'). A
radius r' is a critical radius of e(r) if e(r) disappears

from 8Qg(-) at »'.

Definition 2.3 Let p: € S. F,,(r) contributes to
Qs(r) if OF,,(r) (N 8Qs(r) is not empty.

Fact 2.5 For any r, 0Qs(r) contains at most n F-
edges, since every homothet, F,(r), p € S contributes
at most one F-edge.

Fact 2.6 F,,(r°), p; € S contributes 1o 8Qs(r™)
(i.e. OF,(r®°)NoQs(r™) # 0) if and only if p; satis-
fies

o p;i 15 a verter of CH(S), the convez hull of S,

o there ezists a translation z € R? such that f‘,(.r‘”)
contains all the points of S except p; in its inte-
rior.

Let V' be the set of vertices of CH(S) that correspond
to contributing homothets.

lwe assume that the boundary (8) operation has higher pri-

ority than union and intersection

254

Fact 2.7 The order of edges on Qs(r*™) is the same
as the order by which points of V' appear on CH(S).

To find Qs (r*) we first find CH(S). In order to verify
the second condition of Fact 2.6, it suffices to check
whether there exists an z such that F,(r®) contains
p1 and p2, but does not contain p’, where p;,p, are
the neighboring vertices of p’ on CH(S). Note that we
don’t have to find »*° explicitly.

Let the F-edges of Qgs(r™) be denoted (ordered
clockwise) eo(r®),...em—1(r*®) 2. Let ex be the first
F-edge to disappear. When this occurs, the trajecto-
ries vg—1,x and vk g+1 meet.3. To discover which F-
edge disappears first, we find the intersections of all
neighboring trajectories v; j4+1, (j =0,...m —1), and
their corresponding tentative critical radii. Thus this
point is the intersection of the trajectories vi x—; and
Vk k+1-

The two edges er—1,er meet at the trajectory
Vg—1,k. When e; is deleted, ex—; and ery1 become
neighbors. Thus, the trajectories vi—1: and vg k41
are of no further interest and we compute vg_j x41.
The tentative critical radii of ex_; and egy; are re-
computed.

Procedure Static-Find-SEH(S)

1. Find the vertices of CH(S). For each
vertex determine if it is in V’.
Reindex the vertices in V', so
V'={p1,...pm}.

2. Compute the tentative critical values of
€0,..-€m—1 and put them in a heap.

3. While the heap contains more than three
tentative critical radii do

(a) Find r;, the largest tentative
critical radius in the heap.

(b) Remove r; from the heap.
becomes a critical radius) .

(c) Let e; be the edge corresponding to
r;. Recompute the tentative critical
radii of e;’s neighbor edges, and
update them in the heap.

(Hence r;

4. The three last remaining edges in the
heap determine SEH (S).

2.1.1 Analysis

Finding the convex hull of S can be done in O(nlogn)
time [11]. Finding V'’ takes O(n) time, since for each
vertex of CH(S) it takes O(1) time to check if it is in
148

2 arithmetic on indices is done modulo m

3note that due_ to Fact 2.5, we can reindex the points of S
such that e; C 8F;,. The indices of the points of S which do
not contribute any edge are given arbitrary.

We maintain the tentative critical radii in a heap. In
this data structure finding the minimum requires O(1)
time, and the time of insertion or deletion is O(logn).
Each deletion of an F-edge requires deleting its. tenta-
tive critical radius and updating (deleting and insert-
ing) its two neighbors and their tentative radii. Thus,
there are at most 3n deletions and 2n insertions in the
course of the algorithm. Since building the initial heap
requires O(n), we get:

Theorem 1 Procedure Static-Find-SEH finds the
smallest homothet of F containing a planar set of n
points, in O(nlogn) time and O(n) space.

An algorithm with similar spirit was proposed by
Skyum [13] for finding the static center of a set of
points in the L, norm. Since the vertices of Qg(-)
always travel on edges of the farthest point Voronoi
Diagram, our algorithm, as well as Skyum’s, can be
used to compute this diagram.

3 A Dynamic Approach to the SEH
Problem

As explained in Section 2, the polygon Qs(r)
shrinks and loses edges as we decrease r. We call this
history the Dynamic Polygon, DP. The DP of S can be
discovered while executing Static-Find-SEH on the
points of S. In Section 5.2 we describe a data-structure
for storing the DP . Assume we are given t disjoint
sets of points S1,...S; C IR?, and we wish to compute
SEH (Ui, S:). It is easy to see that r > p(Ui_, S;) iff
Mizy Qsi(r) # 0.

This relation leads us to the following idea: Parti-
tion the (current) set of points S into a collection of
subsets

S=5USU---US;,

and for each such S;, execute Static-Find-SEH. Store
the DP Qgs,(-). When a new point p is given, first
compute the new SEH , using the technique presented
in Section 4. Afterwards update the collection of DPs .
We shall maintain at most ¢ = O(=22&2—) DPs . The
question of when to prepare a new Dﬁ’ i%)r a new subset
of points, as well as when to get rid of an old DP, is
addressed in Section 5.2

4 Finding the new SEH
4.1 Overview

In this subsection we describe how to compute the
new SEH when a new point is given. (The DPs are

not modified.)

Assume ¢ sets of points Sj,...S; are given, each
with its DP, Qs;(-). Let S = J{_, Si, and let ¢ be the
center of SEH(S). Now a new point p1is given, and
we seek SEH({p}US). If p € SEH(S) then, of course,
there is nothlng to calculate. Assume, therefore, p ¢
SEH(S) Let r* = p({p} UUi_, Si), and let F(r) =

Fp(r) N Nizy Qs (r)-

Claim 4.1 If p ¢ SEH(S) then the center of

SEH({p} U S) is on OF,(r*).

As the claim stated, we can limit our attention to
events that happen on OF,(-). Define Js,(r) =
Qs,(r) NOF,(r). Claim 4.1 tells us that it suffices to
look for the smallest radius r for which (;_; Js,(r) # 0
4. We shall now describe the outline of the algorithm
for finding r*.

Procedure Find-New-SEH

1. Find two radii 6;,8,, such that F(&) = 0,
F(62) # 0, and there is no critical
radius of any of the DPs in (6;,62).

2. Find two radii A;, Ag, such
that F(A;) =0, F(A2)# 0, and for every
r € (A1, A2) no vertex of any of the DPs is
on Fy(r).

3. For each pair (S;, Sj) find p;;, the
minimal radius at which Js,(r) N Js,(r) # 0.
(Can be done using elementary geometry in
O(1) time for each pair.)

4. r* = maxi<i,j<t Pij -

4.1.1 Analysis

Steps 1 and 2 will be shown to take O(log3 n) time,
Steps 3 and 4 spend O(1) time for each pair of DPs .
We shall show that the number of DPs t = 0(10';10;")
and hence steps 3 and 4 require in total O(t?) =
O(log?n) time. Hence the total running time of Find-
New-SEH is O(log® n).

4.2 Constructing the Oracle A(-)

Given a radius r, the oracle determines whether r >
r*. This is equivalent to checking whether

Fo(r)n () Fo(r) # 0.

Pi€S

4This idea is reminiscent of the parametric search technique
of Megiddo [7].

255

However, since 1, ¢ F,.(r), and Js,(r) = Qs.(r) N

F,.(r), we just check whether ()i_, Js,(r) # 0. The
sets Js,(r) are subpaths of 8F,(r), so once the Js, (r)
are determined, we have a one-dimensional search
problem.

Our first goal is to determine the intersection points
of Js,(r) with 8F,(r). A pair of points gqi,q2 €
0Qs,(r) is antipodal if one belongs to F,(r) and the
other doesn’t. Consider any two edges f; and fi
and two points ¢, € f; and ¢, € f;. If they are not
antipodal, then by geometrical considerations (detaiis
will appear in the full paper) we can determine in O(1)
time in which of the two path of 8Qs,(r) determined
by points there is NO antipodal point to ¢;. If f; and
fm are both outside F,(r), or both entirely contained
in Fp(r), (which is easily checked in O(1) time) then
if there is an antipode to some point on f; then this
point must be on the path fo,... fn—1. The edges of
Qs (r) are stored as a search tree. Let fi be the edge
corresponding to its root, and Jet g a point in fi. If g
is not antipodal, we again check whether an antipodal
point can be either on fa,:..fi—1 oron fii1,... fmo1.
Assuming the latter, we found a point ¢; € f;, where
fi is the root of the left subtree of fi , and check
again for an antipodal point, either on f;,...fi—; or
on fi41,...fm-1. So in O(logn) such checks we either
find an antipodal pair, and then using binary search
we find Js,(r) , or determine Qg,(r) N Fp(r) =

Recall that the furthest point ¢’ from ¢ among
OF,(r) is not contained in a.ny Js;(r). Travelling along
3Qs, (r) clockwise from ¢’, we meet start-points and
end-points of the Jg,(r). ﬂ:=1 Js;(r) # 0 if and only
if we meet the last end-point after we have met all the
start-points. This is easily checked in O(%) time.

4.3 Finding §;,6,

. We have to determine, for every critical radius of

every DP | what is its size relative to r*. Let I (k)
be the set of the critical radii of Qs,, for wh1ch thelr
relation to r* is not known at the beginning of the kth

iteration. Note that due to transitivity, if r;, r; €I (k)
then any other critical value r, between r; and Tk, 1s

also in Is,. A set Iy () is alive if it contains more than
a single critical radlus

Procedure Find 6y, 6,

1. Let k — 1. For i = 1,.. I() consists
of a11 the critical values of the live

2. While there are live sets repeat

256

(a) Let m_(gli“) be the medians of the live
9.

(b) Let m*) be the medians of m(sli), for

live Igf). Call the oracle A(m(F)y.
(c) Assuming
m(*) > r*. Half of the medians, say

mg.kl) ...m(sk‘) are larger than r*, and
z

at least half of the radii in

ng ...Ist/2 are larger than r*.

(d) Let I(H'l) be all the radii in I(k)
whose relat1on to r* has not been
determined, i=1,. 2 .

Let Ig:-'_l) = g?, 1= §+l,...t

A symmetric case occurs if m®*) < r*,
(e k— k+1

4.3.1 Analysis
Claim 4.2 O(logn logt) calls to the oracle suffice.

Proof: Define a phase as the sequence of iterations
in which the number of live sequences drops by 1/2.
Thus the number of phases is log,t. We now show
that the time needed for a phase is O(logn). Let 7 =
i 1 logs |S:|. At the beginning of a phase, = < tlogn.
Each call to the oracle reduces the length of half of the
live sequences by (at least) half. Hence each call to the
oracle reduces m by %. Let k be the number of such
calls in one phase, then

tlogn
k<<

. Our data structure does not allow us to find the
exact median of each Ig:). Instead, we find in each

iteration an m¥ which is a-median, that is

= 4logn. |

11§ N (=00, mk)|
= 1§

<l-«a

for some fixed @ € [0,1/2). However this does not
affect the asymptotic complexity of the running time
of the algorithm.

The running time of the oracle is O(tlogn),
and therefore the total time needed is O(tlogn x
log nlogt). We shall see in Section 5.2 how to maintain
t= O(log’lo’; —) DPs so this running time is O(log® n).
4.4 Finding A\, A

We seek for two values A;, A2 such that
F(\)=10 F(A)#0

and in the process of shrinking r from A; to Ay, 9F,(r)
does not contain any vertex. Note that in the course
of executing the oracle for finding 6;, 82, we have found
for each Qs; () two paths Pai(7), Pait1(r) C 8Qs,(r),
such that for any r € (61,62), OF,(r) intersects Pa;(r)

and Poiga(r).

Let v(r) be a vertex of Qs,(r). Let R(v) denote the
(unique) radius r at which v(r) is in 8F,(r). We find,
for each path Py two consecutive vertices v;(r), vj4+1(r)
such that R(v;) < r* < R(vj4+1). We can perform a
binary search among its vertices to find v, vj4+1. Again
we use our oracle A(-) and use the same mechanism
developed in the previous section, with the same time
bounds.

5 Data Structures

This section is divided into two subsections. In the
first, we show how to store the history of the shrinking
of a DP. In the second, we show how to update our
collection when a new points is added.

5.1 Implementation of a single dynamic
polygon Qs;(+)

We use a persistent data structure (c.f. Sarnak and
Tarjan [12]), for representing planar subdivision. This
structure enables us for- each 7 to access the F-edges
of Qgs, (7).

As explained in Sectlon 2, for r = r® we have m
F-edges and for each critical radius the number of F-
edges decreases until, when r = p(S;), we have two or
three F-edges. Let us consider r as the time axis. Thus
as r increases the number of F-edges also increases.
For each value of r we need tc search the F-edges that
existed for that r. Consider the XY plane, where r
is the X axis, and the F-edge number is the Y axis.
For each F-edge e; we draw a horizontal half-line from
(rj,J) to X=00, where r; is the critical radius of e;.

Any vertical line ! passes through z = ' intersects
the half lines corresponding to F-edges which are on
0Qs(r'), and it meets them in the same order the cor-
responding F-edges appear on dQs(r').

We use the following modification of the persistent
data structure described by Sarnak and Tarjan. In-
stead of using a red-black tree, we use BB[a] trees, (see
Mehlhorn [8]) which are characterized by the follow-
ing property consider some internal node in the
tree, the number of nodes in each of its
subtrees is at most a times the total number
of descendants of that node. Performing n in-
sertions into an empty BB|[a] tree implies only n up-

dates of the tree and hence it can be made persistent
with O(n) space.

It is easy to see that now that in the course of the ex-
ecution of Procedure find 6, 65, finding the a-median
means just taking the root of the sub-tree containing
I.lér When using this mechanism for finding A1, Az,

we redefine Ig,) such that it contains all the nodes in
the smallest subtree containing the critical vertices of
8Qs, on which we perform our search.

5.2 Maintaining the Data Structure after
each Insertion

In this subsection we sketch how to keep the number
of DPs low, while avoiding spending too much time on
constructing new DPs from old ones. Our method is
based on the schemes of Saxe and Bentley [2] as im-
proved by Overmars and van Leeuwen [10] to convert
static data structure to dynamic ones.

Let 8 = +logn, t = 1 + |logn| =
O(logn/loglogn), and n = Zle a;b*~! be the ex-
pansion of n to base b. We keep the DPs so that DP,
Qs.(-) (=1,...,t), corresponds to a;b*~! points.

A new point is added to the DP of size a; < b.
When its size reaches b it is merged with the DP of size
asb. This procedure is cascaded, so that at any time
there is only a single DP of rank i (size b*.6'+! —1).

Constructing a DP of size a;b* requires
a;b*log a;b* < b**1(i + 1)logh time. Since every point
can participate in at most b—1 DPs of rank 7, and each
such DP contains at least b* points, in the course of the
algorithm we construct at most (b — 1)n/b’ < n/bi~!
DPs of rank i. The total time to construct all the
DPs of rank i is therefore (n/b'~1)bi**(i + 1) logb.

Adding this time for all ranks and amortizing
the construction cost over all the insertions yields
O(log® n/ loglog n) amortized time per insertion.

The technique of Overmars and van Leeuwen en-
ables us to achieve the same time bounds while increas-
ing the number of DPs only by a constant. Hence, an
insertion takes O(log®n/loglogn) in the worst case.
More details will appear in the full paper.

Acknowledgments

Thanks to Klara' Kedem, Seffi Naor, Avigail Orni
and Alon Ziv.

References

[1] P. K. Agarwal and M. Sharir. Planar geometric
location problems and maintaining the width of

257

a planar set. In Proc. 2nd ACM-SIAM Sympos.
Discrete Algorithms, pages 449-458, 1991.

[2] J. L. Bentley and J. B. Saxe. Decomposable
searching problems I: static-to-dynamic transfor-
mation. J. Algorithms, 1:301-358, 1980.

[3] D. Eppstein. Dynamic three-dimensional linear
programming. In Proc. 32nd Annu. IEEE Sym-
pos. Found. Comput. Sci., pages 488-494, 1991.

[4] D. Kirkpatrick and J. Snoeyink. Tentative prune-
and-search for computing voronoi vertices. In
Proc. 9th Annu. ACM Sympos. Comput. Geom.,
1993.

[5] J. Matousek, M. Sharir, and E. Welzl. A subex-
ponential bourd for linear programming. In Proc.
8th Annu. ACM Sympos. Comput. Geom., pages
1-8, 1992.

[6] N. Megiddo. Linear-time algorithms for linear pro-
gramming in R® and related problems. In Proc.
23rd Annu. IEEE Sympos. Found. Comput. Sci.,
pages 329-338, 1982.

[7] N. Megiddo. Applying parallel computation algo-
rithms in the design of serial algorithms. J. ACM,
30:852-865, 1983.

[8] K. Mehlhorn. Sorting and Searching, volume 1 of
Data Structures dnd Algorithms. Springer-Verlag,
Heidelberg, West Germany, 1984.

[9] K. Mehlhorn, S. Naher, and V. Priebe. Private
correspondence. 1993.

[10] M. H. Overmars and J. van Leeuwen. Dynamiza-
tion of decomposabie searching problems yield-
ing good worst-case bounds. In Proc. 5th GI
Conf. Theoret. Comput. Sci., volume 104 of Lec-
ture Notes in Computer Science, pages 224-233.
Springer-Verlag, 1981.

[11] F. P. Preparata and M. 1. Shamos. Computational
Geometry: an Introduction. Springer-Verlag, New
York, NY, 1985.

[12] N. Sarnak and R. E. Tarjan. Planar point location
using persistent search trees. Commun. ACM,

29:669-679, 1986.

[13] S. Skyum. A simple algorithm for computing the
smallest enclosing circle. Inform. Process. Lett.,
37:121-125, 1991.

