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Optimal Algorithms to Detect Null-Homologous Cycles on
: 2-manifolds

- Tamal K. Dey?!

Abstract

Given a cycle of length k on a triangulated 2-manifold, we determine if it is null-homologous
(bounds a surface) in O(n + k) optimal time and space where n is the size of the triangulation.
Further, with a preprocessing step of O(n) time which is performed only once, we answer the
same query for any cycle of length k in O(g + k) time. This is optimal for k > g.

1 Introduction

In recent years a new focus has developed in studying the algorithmic aspects of topology [2, 5, 6,
7], a well developed branch of mathematics. This emergent field has been called “Computational
Topology” [5, 7). It is generally recognized that there is a vast repository of topological problems
which have not been studied extensively from algorithmic point of view. In this paper, we address one
such problem, namely, topologically distinguishing the curves(cycles) on 2-manifolds that bounds a
surface (possibly empty and is not necessarily a disk). These cycles are called null-homologous cycles.

The importance of detecting null-homologous cycles comes from two facts. Homology groups of a
topological space reveals its connectivity. To compute them efficiently Delfinado and Edelsbrunner [2]
showed a geometric approach. Unfortunately this approach did not have any efficient implementation
in dimensions higher than three since there is no known polynomial time algorithm to detect null-
homologous cycles in higher dimensions. Although this paper does not provide a solution for this
general problem, it gives a better understanding of null-homologous cycles on manifolds. Secondly,
dectecting null-homologous cycles is related to a more difficult problem called contarctability problem,
which asks if a given cycle is contractable to a single point. These cycles are called null-homotopic
cycles. For 2-manifolds all null-homotopic cycles are null-homologous, though the reverse is not true.
Recently, we provided an improved algorithm for detecting null-homotopic cycles on 2-manifolds.
This algorithm runs in O(n + gk) time where n is the size of the triangulation, k is the cycle length,
and g is the genus of the given 2-manifold. We can use the algorithm for null-homologous cycles
first, and declare those cycles not null-homotopic that are not null-homologous. Of course, we have
to run the algorithm for null-homotopic cycles when a cycle is detected to be null-homologous. This
approach saves time in those cases where the cycle is not null-homologous since null-homologous
cycles can be detected in O(n + k) time as shown here.

2 Preliminaries

A 2-manifold is a topological space in which each of its points has a neighborhood homeomorphic to
an open disk. A 2-manifold can be infinite or finite. Moreover, it can be closed or open depending

!Computer Science, Indiana University-Purdue University at Indianapolis, Indianapolis, IN 46202, USA.



274

Optimal Algorithms to Detect Null-Homologous Cycles on 2-manifolds

on whether its closure coincides with itself or not. A closed and bounded 2-manifold is also called
a compact 2-manifold. A Sphere and a klein bottle are two examples of compact 2-manifolds. A
2-manifold is called orientable if it has two distinct sides. Otherwise, it is non-orientable. For details
see [4]. In this paper we consider only compact 2-manifolds. '

A 2-manifold is triangulable in the sense that it can be represented as the union of a set of
triangles, edges and vertices satisfying the following properties. Each pair of triangles either share a
single vertex or a single edge, or are completely disjoint. Also, the triangles incident on a vertex can
be ordered circularly so that two triangles share a common edge if and only if they are adjacent in
this ordering.

2.1 Chains and Boundaries

A precise definition of null-homologous cycles can be given algebraically. We use the notations of
[4] for this purpose. Although we will be working with the triangulations of 2-manifolds which are
simplicial 2-complexes, we define all terms here in the most general setting. Let K be a simplicial
complex. An oriented simplex [vp, v1,...,vp] is the p-simplex with vertices v, vy, ..., vp and the par-
ticular ordering on these vertices, vov;...vp. A p-chain on K is a function ¢ from the set of oriented
p-simplices of K to the integers where

1. ¢(o) = —¢(¢’) if o and o’ are opposite orientations of the same simplex.
2. ¢(o) = 0 for all but finitely many oriented p-simplices o.

For an oriented simplex o, the elementary chain c is the function defined as

c(o)=1
¢(o’) = -1 if ¢’ is the opposite orientation of o.
¢(r) = 0 for all other oriented simplices 7.

We use the symbol o to denote not only a simplex, or an oriented simplex, but also to denote
the elementary p-chain ¢ for the oriented simplex . With this notation we write a p-chain d as
d = a101 + @202 + ... + arox where a;’s are integer coefficients.

If o = [vo, v1, ..., vp) is an oriented simplex with p > 0, we define 650 = TP 0(=1) [U0y ery Biy eer V),
where the symbol ¥; means that the vertex v; is to be deleted from the array. The interpretation of
6p is that it finds the oriented boundary of an oriented simplex. For example, an oriented triangle
[vov1v2] gives the oriented cycle [vov1]+ [v1v2] + [v2v;] when operated by ;. For a p-chaind = Y a;0;,
z = §pd = 3" a;6,0; is called the (p—1)-boundary of d. We also say z bounds d. A p-chain d is called
a p-cycle if 6,d = 0.

With the addition p-chains form a group C,(K), called the group of p-chains of K. If p < 0
or p > dimK, we let Cp(K) denote the trivial group. These groups are abelian [4]. The function
8 : Cp(K) = Cp1(K) is an homomorphism. The set of p-chains that are mapped by 6, to the
identity element of Cp—1(K) are called the group of p-cycles and denoted Z,(X). In other words,
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the kernel of 8 is Z,(X). The image of 6541 : Cpy1(K) — Cp(K) is called the group of p-boundaries
and is denoted By(K). A careful observation reveals that B,(K) C Z,(K ). The quotient group
Hy(K) = Zy(K)/By(K) is called the pth homology group of K. A p-cycle z in K is null-homologous
if it represents an identity in H,(X). Stated otherwise, a p-cycle z is null-homologous if there exists
a p + l-chain d so that z bounds d. So a 1-cycle z on a triangulated 2-manifold is null-homologous
if there is a 2-chain d bounded by 2. Two p-cycles z;,z, are called homologous if there exists a
p + 1-chain d so that z; — 2, = §,d.

2.2 Polygonal Schema

Any orientable or non-orientable 2-manifold can be represented by a simple polygon P with even
number of edges which is also called a polygonal schema of S. Each edge of P has a signed label such
that each unsigned label occurs twice. See [3] for details. Two edges with the same unsigned labels
are called partnered edges. Partnered edges can have labels with the same or opposite signs. Two
partnered edges with labels +z and —z represent the same edge on S but are oppositely directed on
P. The labels of the edges that are directed in a clockwise direction around P are signed positively. In
general, we use z° to denote the complement of the label z. To reconstruct a surface homeomorphic to
S from this polygonal representation, the oriented edges with the same labels are identified together
in such a way that their orientations match. For simplicity, we say that S is obtained from P by
identifying partnered edges appropriately. - -

An orientable 2-manifold with genus g > 0 can be represented canonically by a 4g-gon where the
labels on the edges around the polygon are of the form: z,3, z‘l’yfzgygzgyg...zgy,zgyg. For g = 0, the
2-manifold is a sphere which can be represented canonically by two directed edges zz°,

Similarly, a non-orientable 2-manifold can be represented canonically by a 2g-gon where the labels
on the edges around the polygon are of the form: Z1Z1T2%2...TyT,.

2.3 Cycles and Null-homology

Let T denote a triangulation of an orientable 2-manifold S. Let C be any given cycle (oriented) on T'.
The cycle C is a sequence of oriented edges with the first and the last edge meeting at a vertex. Let
P be a polygonal schema of § with a triangulation 7" such that there is a one-to-one correspondence
between triangles of T' and T”. The following lemma proves that such a polygonal schema can be
constructed.

LEMMA 2.1 A polygonal schema P with triangulation 7/ can be constructed from 7' where there is
a one-to-one correspondence between triangles of 7/ and 7.

Proor. We construct a sequence of closed disks Dy, Dy, ..., D, in a plane incrementally such that
P = D, at the end. Initially, D, = ¢/, a triangle in the plane that corresponds to an arbitrarily
chosen triangle 01 on M. Let D; = 0} U 0}...U 0! after the ith step. At the i + 1 th step we choose
a triangle 041 on T which has the following properties: (i) no triangle corresponding to 0;4; has
been included in D;, and (ii) a triangle o; adjacent to 0;4; by an edge has a corresponding triangle
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in D;. These two conditions imply that there is an edge e = o; N 0;41 such that its corresponding
edge ¢’ on D; appears on bd(D;)?. We attach a triangle o}, to bd(D;) such that o +1 Nbd(D;) = €.
This gives the new disk D;4; = D; U a,_,_l It is clear that if D; is a closed disk, so is D;4;. Finally,
when we exhaust all triangles on M, we have D, with the desired triangulation 7.

Let G be the graph on T obtained by identifying the partnered edges of bd(P). If C intersects
the edges of G, C can be written as a sequence of directed paths in T’ with end points on bd(P).
Let U = {u1,u2, ..., ur } be this sequence of paths. A directed path u; from v; to v, can be deformed
to another directed path u} that lies entirely on bd(P) and to the left of u;. Let U’ = {u}, u}, ..., u’}.
The paths in U’ correspond to a cycle C' on G. One can think of this process as deforming C to
another cycle C’ on T so that all edges of C’ lie on the edges of G. We also say that C’ is carried
by bd(P). In terms of homology, C and C’ are homologous since C — C’ is a 2-chain consisting of
the triangles between u; and u! for i = 1,...,r. If C does not intersect G, then it is trivially null-
homologous since the corresponding cycle in 7” lies in int(P)3 which is an open disk. Henceforth,
we consider only the difficult case where C intersects G.

Let z4,%,,...,2; be the edges on G. Let a3,a,,...,as: be the sequence of signed labelled edges
around (clockwise) bd(P). This means a; = (+/-)z; for some j. Consider the 1-chain 8 = a; +
az + ...+ az = 171 + €272 + ... + ¢4z, where ¢; € (—2,0,2). Let the weight w; on the edge z; be the
number of times it is traversed in the clockwise direction minus the number of times it is traversed in
the counter-clockwise direction on bd(P) by the paths in U’. Consider the vectors w = [wy, w2, ..., wy]
and ¢ = [e1, €2, ..., ¢¢]. The following lemma serves as a main tool in our algorithm.

LEMMA 2.2 C is null-homologous if and only if w = mec for some integer m.

Proor. We prove that C’ is null-homologous if and only if w = me. Since C and C' are homologous
the lemma follows.

Let 4 denote the sum of the oriented triangles in 7" where each triangle is oriented clockwise.
If w = me, the cycle C' represents a 1-chain that is a multiple of 8. Since § = 85, we have
C' = mpB = méyy = b3(m7) proving C’ null-homologous. To prove the other direction, assume C’
null-homologous. There must exist a 2-chain d such that C’ = é,d. Also, C' is carried by bd(P).
Any 2-chain d with é,d carried by bd(P) must be a multiple of v, see [4]. Thus C’ = §;d = 62(m7) =
méay = mfB. This immediately implies w = mec.

3 Algorithm

The polygon P is computed in O(n) time. While computing P, we maintain pointers between
corresponding triangles and edges of T’ and T'. We traverse the cycle C on T and detect the paths

2bd(*) denotes the boundary of +
3int(*) denotes the interior of *
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U = {u1,u2,...,uy} on T' in O(k) time through pointers. The paths U’ = {u},4),...,u.} on bd(P)
can easily be detected from the end points of the paths in U. Let j, denote the number of times an
edge a on bd(P) is traversed in the clockwise direction minus the number of times it is traversed in
the anti-clockwise direction. Then w; = j, + j» where a and a’ are the partnered edges with label
z;. We can count j,s for all edges on bd(P) by traversing the paths in U’. However, the total length
of the paths in U’ can be Q(kn) since each edge on C can contribute a path of length Q(n) on bd(P).
To avoid this complexity increase, we count j,s as follows.

Let vy, v2,...,v2; be the sequence of vertices around bd(P) in the clockwise direction. In what
follows all operations on subscripts are done modulo 2t. Let a = v;v;4; for some i € {1,2, ..., 2t} which
is traversed in clockwise direction from v; to v;41. To count the number of paths in U’ traversing a
in the clockwise direction, we have to count the number of paths starting from v; and the number of
paths that have v; inside. Let £,,_, be the number of paths that traverse the edge v;_yv; from v;_; to
;. Then the number of paths traversing a in the clockwise direction is £,; = £,;_, + oy, — #y;, Where

; is the number of paths starting at v; and i,; is the number of paths ending at v;. To compute
l,,,, it is enough to know o,, and i,, for each vertex v; and £,, for the vertex v;. Computing Oy;
and i,, is straightforward. For each end vertex of the paths in U (equivalently in U’) we count the
number of paths starting from that vertex and the number of paths ending at that vertex. For all
other vertices o,; and ,; are zero. To compute £,,, we number the vertices vy, va, ..., vo; with integer
indices 1,2, ...,2t. Now it is simple to detect the paths in U’ that include v; in between. For this,
we check in constant time if 1 is in between the integer indices of the_two end vertices of a path
according to the circular sequence 1,2, ...,t,1. The number of such paths added with 0y, -gives £, .

Once we have computed £,, for each vertex v;, it is straightforward to compute the vector w. We
declare C to be null-homologous if and only if w = mc for some integer m (Lemma 2.2). Computing
0v;»iv; and £,, while going around C (equivalently over the paths in U) takes O(k) time if C has
the length k. Computing £,,’s while moving around bd(P) takes O(t) time. The vector ¢ can be
precomputed from P in O(?) time. Checking if w = mec takes at most O(t) time. Since ¢t = O(n) we
get an O(n + k) time complexity algorithm.

THEOREM 3.1 Let T be a triangulation of a compact 2-manifold of genus g. Given a cycle C of
length k on T, there exists an O(n + k) optimal algorithm that detects if C is null-homologous.

4 On-line Queries

In an on-line setting, we are supposed to have a preprocessing step and then answer the null-homology
of the query cycles which come on-line. For this we use the property of another invariant group of
topological spaces called the fundamental group. Let P be the polygonal schema of $ as constructed
in Lemma 2.1 and G be the graph obtained by appropriately identifying edges of bd(P) We construct

a spanning tree Y of G. Let by, by, ..., b be the edges of G not in Y and b}, ...by, be the signed
edges around bd(P) corresponding to these edges. In [1], we proved that bl,bz, , b represent the
generators of the fundamental group of S with respect to the relation by, b5,...,05, = 1. Also it is

proved that £ = O(g). One dimensional homology group of a topological space can be obtained from
its fundamental group by making the group operation commutative. Therefore b1, ba, ..., bg are also
generators of H1(S) with the relation b3 + b3 +... + by, = e1b1 + e2b2 + ... +¢oby = 1 for ¢; € {~2,0, 2}.
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Let w; be the weight of the edge b; obtained from the paths u}, u),...,u}. The given cycle C is
null-homologous if and only if w = [wy, w, ..., w] = m[e1, c2, ..., ¢f] for some integer m. To compute
w efficiently, we create another polygon @ from P in a preprocessing step as follows. The polygon
Q has 2 edges labeled b1, b, ..., b}, around it. We maintain pointers from the vertices of P to the
vertices of @ as follows. Let blbi,; be any two consecutive edges in the sequence b}b5...b5, and
v1v2...05 be the vertices between b} and b},; where v, is an endpoint of b} and v, is an endpoint of
b41. All these vertices point to the same vertex v between b} and b/, in Q. The polygon @ can be
thought of as the polygon P with all edges in the spanning tree Y shrunk to a single vertex. The
path u} from v; to v, on bd(P) is represented by the path u/ from v} to v} on bd(Q), where v}, v}
are the vertices on bd(Q) corresponding to the vertices vy, v, respectively. The vertices v{, v} can
be obtained from v;,v2 in O(1) time through pointers. Applying similar technique of section 3 on
bd(Q) we can determine w;s in O(g) time. The preprocessing step to create P and Q takes at most
O(n) time altogether. Given any query cycle C on line, the end vertices of u} and hence u! can be
detected in O(k) time. This is followed with an O(£) = O(g) step to compute w;s and checking if
[wy, wa, ..., w,] = m[e1,c2,...,¢f. Hence on-line queries can be processed in O(g + k) time once we
have an O(n) time preprocessing step.

5 Conclusions

We have presented an optimal algorithm to detect null-homologous cycles on triangulated 2-manifolds.
We have also given an efficient solution for the on-line version of the problem. However, this algo-
rithm is not optimal for g > k. Finding an optimal O(k) algorithm for this problem remains open.
A challenging problem is to dectect null-homologous cycles of arbitrary dimensions on arbitrary
complexes. An efficient solution to this problem provides an efficient method to compute homology
groups of simplicial complexes [2].
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