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Abstract

Volume intersection is an object reconstruction technique
which supplies a boundary volume R of an unknown 3D
object O. It consists in intersecting the volumes obtained
by back-projecting a number of 2D silhouettes of 0. Sev-
eral algorithms have been presentedfor computing R un-
der different hypotheses relative to viewpoints, type of
projection (parallel or perspective), representation of the
reconstructed object. Not any concave object O is exactly
reconstructable by volume intersection: the closest ap-
proximation of O that can be obtained with this approach
is its visual hull, a recently introduced geometric entity.
Only objects coincident with their visual hulls are, in the-
ory, exactly reconstructable(e-reco).

Inpractice, to exactly reconstruct an object we must also
Jface computational problems. This paper addresses the
problem of finding the theoretical minimal number of in-
tersections necessary for exactly reconstructing an object
O, or its visual hull if O is not e-reco. Among other re-
sults, we have found that to reconstruct polyhedra with a
bounded number n of faces may take an unbounded num-
ber of intersections. In the case of viewpoints also lying
inside the convex hull of an e~reco polyhedron, we show
that O(n3) intersections are sufficient, and give an algo-
rithm for finding the viewpoints.

L. Introduction

Reconstructing 3D shapes from 2D images is an im-
portant area of research in computer vision. Possible ap-
plications range from the representation of a robot’s
workspace to the construction of models of human or-
gans. The technique known as volume intersection
[1-17]constructs a representation of a 3D object O start-
ing from a set of silhouettes Siof O. With the word sil-
houette we indicate the region of a 2D image of an object
O which contains the projections of the visible points of
the object.

The volume intersection technique(Fig.1) recovers a
volumetric description Rn of the object by intersecting the
solid regions of space Ci within which each silhouette S;

constrains the object to lie:

n
Rn= n Ci
i=]
The reconstructed volume R is therefore a bounding
volume which more or less closely approximates O. For

Fig.1-The volume intersection approach to the
reconstruction of 3D objects.

perspective projection the regions Ci are cones obtained
by back—projecting from a viewpoint V the correspond-
ing silhouette. For orthographic projections, these re-
gions are cylinders obtained by sweeping the silhouettes
along lines parallel to the viewing directions. In both
cases the regions are bounded by ruled surfaces. We refer
to these surfaces as to the circumscribed cones or cylin-
ders of O. In the following, when not otherwise explicitly
stated, for simplicity we will speak of cones, conical sur-
faces and viewpoints referring both to perspective and
parallel projections.

The rationale of the volume intersection approach to
3D object reconstruction is that silhouettes can usually be
obtained with simple and robust algorithms from inten-
sity images. Another feature of this approach is that it
does not compel us to find correspondences between mul-
tiple images.

Many volume intersection algorithms specify the re-
constructed object Rn with an octree representation(see
for instance the work of Ahu ja and Veenstra[7], Noborio
etal.[13], Chien and Aggarwal[3]). Other representations
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have also been used, for instance by Kim and Aggar-
wal[2], and Martin and Aggarwal[10].

However, the volume intersection approach raises a
number of theoretical questions, namely:

(a)which objects are exactly reconstructable;

(b)which is the closest approximation that can be ob-
tained for non reconstructable objects;

(c)what can be inferred about the unknown object O from
a reconstructed object R;

(d)how many silhouettes are necessary for the reconstruc-
tion;

(e)how to choose them efficiently.

The recently introduced geometric concept of visual
hull answers questions (a) and (b)[18], [19], [20].

The inference of the shape of the unknown object
from the reconstructed object(question (c)) is discussed
in [21].

Choosing efficiently the silhouettes of the unknown
object (question (¢))is an important open problem. Some
volume intersection algorithms use a fixed set of viewing
directions(see for instance [4], [7], [14]). This provides
certain advantages for intersection algorithms which
specify the reconstructed object as an octree, but crude
approximations of the unknown object may result. An ob-
ject—specific, active approach could be more effective.
Some work in this direction has been done by Shanmuck
and Pujari[9] and by Lavakusha et al.[16]. To discuss the
efficiency of the choice of the silhouettes requires a suit-
able definition of reconstruction accuracy. Such a defini-
tion, based on the visual hull concept, is provided by this
paper. :

As we will see in the following, only objects coinci-
dent with their visual hulls are exactly reconstructable, at
least in theory. In practice, we must also consider the
amunt of computation required for performing an exact
reconstruction. This paper addresses the problem of find-
ing the theoretical minimal number of intersections nec-
essary for exactly reconstructing an object(question (d)).
We are particularly interested in classes of objects which
require a bounded number of intersections: even if opti-
mal algorithms for choosing the sithouettes were avail-
able, we could exactly reconstruct only objects of these
Classes. )

This paper is organized as follows. In Section II we
describe the visual hull concept and summarize its rele-
vant properties. In Section III we discuss anew definition
of reconstruction accuracy. In Section IV we investigate
the minimal number of intersections required for recon-
structing an object (or its closest approximation).

II. The visual hull

The visual hull is a geometric entity which has been
recently introduced by Laurentini[18],[19], [20], as a tool

for dealing with silhouette-based image understanding,
that is recognizing or reconstructing objects from their
silhouettes. It provides immediate solutions to the first
couple of problems stated in the introduction. In this sec-
tion we summarize the material relevant to our discussion
contained in [20].

The visual hull of a 3D object O can be informally de-
scribed as the volume enveloped by all the possible cir-
cumscribed cones of O. A formal definition is as follows:
Definition 1
The visual hull VH(O,V ) of an object O relative to a view-
ing region V is a region of E3 such that, for each point
Pe VH(O,V) and each viewpoint VeV, the half line start-
ing at'V and passing through P contains at least a point of
0.

Of course, it is VH(O,V)=20. We also have that:
Proposition 1
If V>V’ then VH(S\V)SVH(S,V’)

It can be shown that the following fundamental property
holds:

Proposition 2

VH(O,V) is the closest approximation of O that can be
obtained using volume intersection techniques with view-
points VeV.

This proposition is the answer to the second question
stated in the introduction. From Proposition 2 we also
obtain immediately the answer to the first question:
Proposition 3
An object O can be exactly reconstructed by volume in-
tersection techniques using silhouettes observed from a
viewing region V if and only if it is O=VH(O,V)

An object satisfying the condition of Proposition 3
will be specified with the adjective e-reco.

Although this is not strictly relevant to our discus-
sion, it is worth noting that VH(O,V) is also the largest
object silhouette—equivalent(i.e., that gives the same sil-
houette ) to O when observed from viewpoints belonging
to V.

An object has an infinite number of visual hulls. one
for each viewing region. However, we can restrict our-
selves to two main cases.

The first case refers to any viewing region which
completely encloses O without entering its convex hull. It
can be shown that there is a unique visual hull for all these
regions, which does not exceed the convex hull CH(O) of
the object. This appears to be the case of main practical
interest, since usually the object to be reconstructed lies at
some distance and can assume any orientation with re-
spect to the viewpoints. We refer to the visual hull rela-
tive to these regions as to the external visual hull, or sim-
ply the visual hull VH(O), without any other specifica-
tion. Examples of visual hulls of simple polyhedral ob-
jects are shown in Fig. 2.
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Fig.1—Four simple concave polyhedra(a), (b), {(c),
(d), and their visual hulls(a’), (b"), (¢"), (d").

The second case, of lesser practical interest, refers to
the unrestricted viewing region V=E3-Q. The visual hull
relative to thisregion is defined as the internal visual hull,
and denoted IVH(O).

Convex hull, visual hull, internal visual hull and O are
related by the following inequalities:

Proposition 4
O<IVH(O)<VH(0)<CH(0)

Algorithms for computing VH(O) and IVH(O) have
been given for polygonal sets[18], polyhedra[20] and sol-
ids of revolution[19].

IIL. Defining the reconstruction accuracy

Itis clear that the choice of the number and the posi-
tion of the viewpoints is a crucial point in volume inter-
section algorithms. For evaluating the effectiveness of
this choice, it is necessary to define some accuracy index,
that is some measure of the similarity between the origi-
nal object O and the reconstructed object R. Since the
volume intersection algorithm supplies volumes, a rather
natural idea is to define the accuracy of reconstruction Ay
as the ratio between the volume Vol(O) of the original
object and the volume Voi(R) of the reconstructed object:
Av=Vol(0O) /Vol(R)

This volumetric definition of accuracy has been as-
sumed for instance by Ahuja and Veenstra [7], Potem-
sil[12], Noborio et al.[13], Shanmuk and Pujari[9], for
evaluating the efficiency of their algorithms. However,
this definition is not without shortcomings. One problem
is that it mixes together two different kinds of reconstruc-
tion errors: those depending only on the intrinsic features
of the object, and those related to the choice of the silhou-
ette. The availability of the visual hull concept allows us
to overcome this problem(which was perceived also by
Ahuia and Veenstra[7]) by defining an accuracy Avy
which makes reference to the volume Vol(VH(O)) of the
visual hull:

AVH= Vol(VH(O)) / Vol(R)
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Let
AI=Vol(0) [ Vol(VH(O))

Then
AV=AVHXA]
where the accuracy A/ due to the intrinsic properties of O
is separated from the accuracy AvH related to the choice
of the viewpoints.

However, let us remark that this definition is conven-
ient for evaluating the reconstruction accuracy of known
object. To construct effective active algorithms, at each
step of the reconstruction process we need: '

i) a measure of accuracy capable of indicating if a suffi-
ciently precise reconstruction of an unknown object has
already been obtained

ii) a rule for choosing a new silhouette which improves
the accuracy when its current measure is unsatisfactory.

The volumetric accuracy measure AVH is obviously
unable to support this process, since it cannot be com-
puted for the current object. To succeed in finding a new
definition suitable for this purpose would be an important
step toward effective active volume -intersection algo-
rithms.

IV. Minimal numbers of intersections neces-
sary for exactly reconstructing some classes
of objects or visual hulls

Let us suppose that, using the volume intersection
technique, we attempt to achieve a unitary accuracy AvH,
that is to exactly reconstruct an object O, or, if O is not
e-reco, its visual hull. Let/Omin in the former case, and
IVHmin in the latter, be the theoretical minimal numbers
of intersections that we must perform.

1Omin and IVHmin are important since they put com-
putational limits to the possibility of exactly reconstruct-
ing in practice an object or its closest approximation. In
this section we will discuss these numbers for some cate-
gories of objects. We are particularly interested in find-
ing classes of objects with bounded IOmin or IVHmin. We
will call f-reco the objects which in theory are exactly
reconstructable with a finite number of intersections; if
this property holds for their visual hulls, we shall call
them f-vhreco. The viewpoints are supposed to lie out-
side the convex hull of the object. This assumption is re-
quired by the definition of visual hull, and in keeping with
several practical situations of reconstruction for an e—
reco object.

Let us recall that the volumes to be intersected have
conical or cylindrical surfaces, produced by families of
lines passing through a point or parallel to a direction.
This means that the surface of any object obtained by
means of a finite number of intersections consists of a fi-
nite number of patches of conical or cylindrical surfaces.

Surfaces of this kind will be defined R-surfaces. We have
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the following obvious statements:

i)}-To have an R-surface is a necessary condition for an
object to be f~reco.

ii)-To have a visual hull with an R—surface is a necessary
condition for an object to be f~vhreco.

Itis clear that the condition of statement i) is not a suf-
ficient condition, since an object having an R-surface
might not be coincident with its visual hull. The condition
of statement /i) could be intuitively conjectured to also be
sufficient : an example in this section will show that this is
not the case.

From the above statements it follows that objects with
curved surface are f~reco or f~vhreco only in exceptional
cases. Even a simple curved object like a sphere is not

f-reco. In these cases it seems preferable to speak of ob-
jects reconstructable with arbitrarily high accuracy AvH.

Polyhedral objects

Let us consider an apparently more promising cate-
gory of objects, the polyhedra, which satisfy the above
necessary condition for being f~reco, since their planar
faces are R—surfaces. Let n be the number of faces of a
polyhedron P; one could conjecture, at least for same
classes of polyhedra, the existence of a function f{n) such
that IOmin or IVHmin are O(f(n)).

Itis immediate to verify that this is true for the class of
convex polyhedra, which obviously are e-reco. Actually,
if the planes supporting the faces are in general position (a
set of planes is said to be in general position if the inter-

section of any triplet of planes of the setis a point and all

these points are different), we have that /Omin is the mini-
mal integer which is larger or equal to n/3. This number,
obtained by choosing the viewpoints at the intersections
of disjoint triplets of planes supporting the faces, is an
" upper bound when the faces are not in a general position.
Let us consider now general polyhedra with n faces,
which may or may not be e-reco. Let us consider first the
class of objects different from their visual hull, and there-
fore not e—reco. We have presented examples of non—
convex polyhedra (Fig.2) whose visual hulls are also
polyhedra. However, there are concave polyhedra whose
visual hulls are bounded by quadric ruled patches, gener-
ated by lines which are tangent to the polyhedron at three
edges(see [18],[20]). An example of asuch polyhedron is
shown in Fig.3 , together with its visual hull. The curved
patches are segments of hyperboloids of one sheet or hy-
perbolic paraboloids[20], which are not R—surfaces.We

must therefore conclude that the class of general

polyhedra is not f~vhreco. The same conclusion can be
obtained by observing that, since every silhouette of a
polyhedron is polygonal, and thus the volumes to inter-
secthave planar faces, a curved patch cannot be generated
with a finite number of intersections.

a non-planar surface

Fig.3—A polyhedron P and its visual hull VH(P),
whose surface contains a non—planar patch.

Letus now consider general polyhedra with a poly-
hedral visual hull. This class contains as a subclass the
polyhedra e-reco. We have the rather surprising results
that, using viewpoints lying outside the convex hull of the
objects to reconstruct, this subclass is not f~reco, and the
class of polyhedra with polyhedral visual hull is not f~
vhreco. These counterintuitive statements can be proved
by the following example. Let us consider the concave e—
reco polyhedron(or visual hull)PL of Fig.4, with14

Fig.4— A polyhedron whose reconstruction.may require
an unbounded number of views.

faces. A section of PL made by the plane p supporting the
face F is shown in Fig.5. To reconstruct F’, the part of F
highlighted in Fig.4, the viewpoints must lie on p in the
regions R or R’, which are outside the convex hull of the
object. A possible viewpoint V and the part S of F’ re-
constructed from this viewpoint is shown in Fig.5. It is
clear from the figure that, by reducing the distance be-
tween the vertical wedges without affecting the number
of faces of the polyhedron, S can be made arbitrarily
small, and therefore the number of silhouettes required
for reconstructing F’ arbitrarily large.
In conclusion, we have that:

Proposition 5
Using viewpoints outside the convex hull, an unbounded
number of silhouettes may be required for exactly recon-
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Fig.5— A section of the polyhedron PL made by the
plane p supporting the face F.

structing a non—convex polyhedron or polyhedral visual
hull with a bounded number of faces.

The example discussed also shows that to have a vis-
ual hull with an R-surface is not a sufficient condition for
an object to be f~vhreco.

The viewing region is crucial for the number of inter-
sections. In fact, let us now remove any restriction on the
position allowed for the viewpoints, and consider the
class of e-reco polyhedra . We have the important result
that in this case the minimal number of intersections is
bounded. More specifically, the following proposition
holds:

Proposition 6
Any e-reco polyhedron PL with n faces can be recon-
structed withO(n5) volumetric intersections using uncon-
Strained viewpoints.

We will give a constructive proof of this statement, by
describing an algorithm which for each face F of PL con-
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structs O(n4) regions and O(n4) viewpoints such that:
i~each region can be reconstructed by a single viewpoint
ii-any point P of F belongs at least to one of these regions.

The algorithm for finding the viewpoints

The viewpoints necessary for exactly reconstructing a
face F must lie in the plane p which supports F. In this
theoretical study we will also admit viewpoints lying on
F, even if this is a limit situation. Let us consider a point P
of a face F supported by a plane p, and let SP be the po-
lygonal intersection of PL and p, excluding F itself. If
SP is empty, the face is convex and thus can be recon-
structed with one intersection. Let us consider a not
empty SP. Since by hypothesis each face is reconstruc-
table, there must exist(at least) one line L passing
through P and lying on p which shares with PL only
points of F, and therefore does not cross at any point the
boundary of SP. Let us rotate L clockwise about P. Line
L will touch the boundary of SP at a point Q(see. Fig.6
(a)). Let us alsorotate L counterclockwise until it touches
the boundary of SP at a point R; there are two possible
cases, shown in Fig.6.(b) and(c). Consider case (b), and
rotate counterclockwise the line PQ about Q and clock-
wise the line PR aboutR, until they reach the boundary of
SP(see Fig. 6(d), where the rotation of line PR is halted by
one of the edges of SP converging atR). Choose as view-
point the point V, lying at the intersection of the two ro-
tated lines. From V, the zone highlighted in Fig. 6(d) can
be reconstructed. In case (c), the viewpoint V’ can be ob-
tained by rotating counterclockwise both the lines PR
and PQ, as shown in Fig. 6(e).

In conclusion, given a point P of F we have shown
how to construct a viewpoint capable of reconstructing a

Fig.6—The construction of a viewpoint capable of reconstructing a zone of a face F containing a point P.
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zone of F containing P. These viewpoints lie at the inter-
section of two lines passing trough two vertices of SP
(this proposition has no exceptions if we also consider
vertices belonging to the same edge of SP). These lines
are O(n2), and thus all the possible viewpoints, which re-
construct at least once each point of the face, are' O(n4).
Considering all the faces of PL, we obtain the bound of
O(n3) intersections.

Observe that the viewpoint constructed as shown be-
fore could lie everywhere on the plane of each face, and
thus also inside the convex hull of PL. Let us consider
again the example of Fig. 4. Itis easy to see that the view-
point suitable for reconstructing F’ lies at the intersection
of the lines L1 and L2, which is inside the convex hull of
the object.

V. Summary

We have addressed some theoretical question raised
by the volume intersection technique for reconstructing
3D objects. After introducing AvH. a measure of recon-
struction accuracy based on the concept of visual hull, we
presented a discussion on the minimal number of volume
intersection operations necessary for achieving unitary
AvH. This discussion is important, since it states compu-
tational limits to the exact reconstruction of an object us-
ing the volume intersection technique. Object with
curved surfaces cannot be reconstructed with a bounded
number of intersections, except for exceptional cases.
Planar face objects are more likely to be exactly
reconstructable with a bounded number of silhouettes.
However, we have found that to exactly reconstruct a
concave polyhedron, or its visual hull if the polyhedron is
not reconstructable, using viewpoints lying outside the
convex hull of the object may require an unbounded num-
ber of intersections. The number of intersections required
is affected by the viewing region. Using unconstrained
viewpoints, we have shown that any theoretically
reconstructable polyhedron can actually be constructed
with O(nS) intersections, and given an algorithm for find-
ing the viewpoints .
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