291

An Output Sensitive Algorithm for the
Computation of Shadow Boundaries

A. James Stewart

Sherif Ghali

Department of Computer Science
University of Toronto

Abstract -

Given a set of polyhedra and a polygon ¢ in E3, the
o-aspect graph is a partition of the faces of the poly-
hedra into regions such that the area of o that is visible
from each region has the same structure or “aspect.” We
present an output-sensitive algorithm to compute the o-
aspect graph. In computer graphics, this problem arises
in rendering images of polyhedral scenes illuminated by
area light sources. This is the first analytical solution for
the problem and the algorithm is simple enough to be
useful in practice.

1 Introduction

A problem that arises in computer graphics is the com-
putation of the shadow boundaries of a set of polyhedra
lit by a polygonal light source. The shadow boundaries
are curves on the faces of the polyhedra at which there
is discontinuity in the intensity of the received light.

State-of-the-art radiosity-style rendering algorithms
partition the polygons of the scene into somewhat ar-
bitrary regions and compute light transmission between
pairs of regions. Since it is assumed that the intensity
of light varies continuously over each region, the images
generated by these algorithms are erroneous when the
edges of the regions do not embed the shadow bound-
aries. A standard technique to avoid this problem is to
recursively subdivide regions over which there is a sharp
change in intensity. However, this leads to a very large
number of very small regions near shadow boundaries.

Another problem that arises in computer graphics is
to determine the intensity of light received by a point on
a surface in the scene. This is usually done by computing
the portions of the light source that are visible from the
point and evaluating a particular integral over these por-
tions. With this approach, the vast majority of time is
spent computing the structure of the visible light source,
as seen from the point.

Since the o—aspect graph partitions the faces of the
polyhedra into regions such that the structure of the

visible light source o is constant within each region, it is
sufficient to compute the structure once for any region of
the o—aspect graph in order to efficiently answer intensity
queries for points within that region. The structure com-
putation can be done incrementally at a cost of O(logn)
per region in a scene of size n, as will be described at the
end of Section 5. This technique results in a consider-
able speed increase over existing algorithms that answer
intensity queries.

The umbra and penumbra are regions in space from
which the light source is completely obscured and par-
tially obscured, respectively. Previous work in computer
graphics has concentrated on computing the umbral and
penumbral boundaries and incorporating these bound-
aries in the partition-of the scene. This is not suffi-
cient since a penumbra region will usually contain dis-
continuities that require further subdivision of the re-
gion. Chin and Feiner compute the umbral and penum-
ral boundaries for point and area light sources [CF89,
CF92] using binary space partitioning trees. Campbell
and Fussell [CF91], Lischinski, Tampieri, and Green-
berg [LTG92], and others compute a subset of the shadow
boundaries which includes the boundaries of the umbra
and penumbra regions. The most complete algorithm to
date is that of Heckbert [Hec92], which will be described
later.

The problem we address is closely related to the com-
putation of aspect graphs, as studied in computer vi-
sion [GCS91]. The aspect graph represents all possible -
views of a scene by partitioning the viewpoint space into
regions such that the structure of the scene is the same
for each point within a given region.

2 Discontinuity Surfaces

A scene is a set of polyhedra {®;,®5,...,®,} in E® and
a polygon o of bounded size which is considered to be
a light source. There are a total of n vertices among
the polyhedra. Each vertex has bounded degree. Every
pair of features (vertices, edges, or faces) that are not
topologically adjacent are separated by a distance greater
than some constant a.
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In a given scene, a discontinuity surface <egq,ep, e.>
is the locus of points w such that, for some point s on
o, the interior of the line segment (w, s) intersects edges
€a, €p, and e, and nothing else. The surface <e,, €3, e.>
1s a ruled surface [Som34]. All directed segments (w, s)
that intersect eq, ep, and e. do so in the same order.
(Otherwise, the intersection points of two of the edges
would be coincident for some such segment, and hence
for all such segments.) The edge whose intersection is
most distant from o is said to generate the discontinuity
surface.

If two of the edges intersect at a vertex v the disconti-
nuity surface is denoted <e, v>, where e is the remaining
edge. All directed segments that intersect e and v do so
in the same order. The one of e and v whose intersection
is most distant from o is said to generate the discontinu-
ity surface.

Figure 1: Surfaces <e;, e2,e3> and <ej,v> (shaded)

For example, see Figure 2. As a viewpoint moves from
a to b on face f, it crosses the surface <e,v> and a
triangular region of o becomes visible. Before crossing
the surface the intensity of light received from the light
source o is zero. After crossing the surface the intensity
increases approximately quadratically because the visible
area of ¢ increases quadratically. The intensity of light
received along the segment (a,d) is shown in the graph.
At the intersection of (a,b) and <e,v> a discontinuity
in the second derivative occurs, hence <e,v> is called
at D? discontinuity surface.

If two edges in the scene are parallel and the plane de-
fined by them intersects o a D! discontinuity surface is
defined (across which the illumination function has a dis-
continuity in its first derivative). For simplicity of expo-
sition, we ignore this case in the following presentation;
only minor modifications of the algorithm are needed to
handle it.

3 The Problem

A discontinuity curve is the intersection of a discontinu-
ity surface with one of the faces of the scene. For a given
scene, the o-aspect graph consists of, for every polyhe-
dron face of the scene, the arrangement of all discontinu-
ity curves on that face. The problem is to compute the
o-aspect graph for a given scene.

Heckbert [Hec92] considers a slightly different prob-
lem, that of computing the aspect graph with respect to
every polygon in the scene, rather than a single polygon
0. The algorithm generates all potential planar disconti-
nuity surfaces, each being defined by an edge-vertex pair
in the scene. The algorithm computes the intersection of
each such plane with the polygons of the scene and solves
a two dimensional visibility problem to find the discon-
tinuity curves on the plane. After all curves have been
found, a plane sweep across each face suffices to compute
the arrangement of the curves. The algorithm takes time
O((n® + k)logn) and does not consider the discontinu-
ity surfaces defined by triples of edges (k € O(n?) is
the complexity of the resulting aspect graph when only
edge-vertex surfaces are considered).

Given a discontinuity surface <e,, €3, €. >, the discon-
tinuity curves that are the intersection of the surface with
the faces of the scene can be found in time O(nlogn) as
follows (this is similar to Heckbert’s approach). Edges
€a, €, and e, define a ruled surface which is the locus
of all lines that simultaneously intersect the three edges.
For each face of the scene, compute the curve which is
the intersection of this surface and the face. Discard
those curves which lie above the generating edge (i.e. on
the same side of the generating edge as o). This step
takes time O(nlogn) since the intersection points are
sorted along the curves. Among the curves that remain,
determine which segments lie on <e,,es,e.> by com-
puting their upper envelope in time O(nlogn) with a
sweep across the ruled surface. In a similar manner, the
discontinuity curves from surfaces <e,v> can also be
computed in time O(nlogn). These procedures are said
to cast a surface.

A naive solution to the o—aspect graph problem is to
consider every triple of edges in the scene. The surface
defined by each triple is intersected with the polygons
in the scene and a two dimensional visibility problem is
solved on that surface. After all curves are found, each
face is swept to compute the arrangement. This approach
would take time O((n* + k)logn), where k € O(n®) is
the complexity of the o—aspect graph.

In the following sections we present an algorithm
whose running time is sensitive to the number of dis-
continuity surfaces.
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Figure 2: D? discontinuity curve

4 Preliminaries

In a given scene, the backprojection B = (P,L,S) at a
point v consists of a set P of polygons, a set £ of ordered
sets of edges, and a sphere S with center v and radius a.
The polygons in P are the areas of ¢ visible from v, cen-
trally projected onto S. Each polygon is represented as
a sequence of edges, and each edge stores the polyhedron
edge whose projection it is. Since each polyhedron edge
e; can contribute up to n edges to P (on the same great
circle of §), an ordered set £; of these edges is maintained
for each e;. The set of ordered sets is L.

For an edge ¢ in P, let scene(e) be the segment of a
scene edge whose projection is e and let image(e) be the
projection of e through v onto the other side of S.

Lemma 1 Let v be a vertez of polyhedron ®, let B =

(P, L,S) be the backprojection at v, and let e be an edge
in P. Then the discontinuity surface <scene(e),v> is
nonempty if and only if some point of image(e) does not
intersect ®. :

Proof Any point w on the discontinuity surface
<scene(e),v> lies on a segment (w,s) that intersects v
and scene(e) on its interior (where s is a point on ). The
line of (w, 5) intersects S at some point w’ of image(e).
Since w is on the discontinuity surface, w does not inter-
sect @ and the ray from v through w (and w') lies on the
exterior of the cone defined by the faces adjacent to v. It
follows that the open segment (v, w’) does not intersect
any polyhedron, since the only polyhedron in the sphere
S is ®. Since (w', s) intersects only v and scene(e) on its
interior, w' is a point on the discontinuity surface. Thus,
if the discontinuity surface is nonempty there is some
w' € image(e) that does not intersect ®. It is clear that
if there is some w' € image(e) that does not intersect ®
then the surface is nonempty. O

Given the backprojection at v, the d nonempty dis-
continuity surfaces generated by v can be enumerated in
time O(nlogn+d), as follows. From Lemma 1, it is suffi-
cient to enumerate the edges e € P for which image(e) is
not wholly interior to ®. Recall that £; € £ is an ordered
set of edges of P that lie on some great circle of S. The
great circle can be partitioned into open arcs aj ...ax
whose images image(a;) are alternately interior and ex-
terior to ®. If £; is stored as a balanced binary tree the
endpoints in £; of an arc can be found in time O(logn),
and the edges of £4; that lie on arcs whose image is ex-
terior to @ can be enumerated in time O(klogn + d;),
where d; is the number of such edges. Since a vertex has
a bounded number of adjacent faces, k is bounded and all
such edges in P can be enumerated in time O(n log n+d).

In the following, a point is said to be above a face if it
is in the halfspace containing the face’s outward pointing
normal.

Lemma 2 Let e be a convezr edge adjacent to faces f;
and f; of a polyhedron ®, let € be an open segment of
e that does not cross any discontinuity surface, let v be
any point on €, and let B = (P,L,S) be the backpro-
jection at v. Then for a vertez in P defined by the in-
tersection of two edges, e, N ey, the discontinuity sur-
Jace <&, scene(eq),scene(ep)> is nonempty if and only if
ea Nep is above one of f; and f; and below the other.

Proof Let (v,s) be the line segment that intersects
on its interior exactly scene(es) and scene(e;) for some
point s on o. The discontinuity surface is nonempty if
and only if there exists some v on € such that (v, s) can be
extended to include v on its interior without intersecting
any polyhedron. Since € is an open segment that does
not cross any discontinuity surface, a point defined by
es Nep is present in the backprojection of every point
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on € and has the same relation to f; and f; at every
point. Thus the condition of the lemma is true of either
all points on € or no points on €. If € is nonconvex or
eqa N ey is above both f; and f; then any extension of
(v, s) would intersect the interior of ® (note that eg Nep
ccannot be below both f; and f;, since this region is not
visible from v). Otherwise, the quadrant opposite e; Nep
is empty within § and (v, s) can be extended. Thus there

is an extension at every point along € if and only if e;Ney .

is above one of f; and f; and below the other. O

Given the backprojection on €, the d nonempty dis-
continuity surfaces generated by & can be enumerated in
time O(nlogn + d) as follows. From Lemma 2 it is suffi-
cient to enumerate those vertices in P that lie above one
of f; and f; and below the other. Each £; € L corre-
sponds to a great circle of S which can be divided into
four arcs by the planes of f; and f;. With the same ap-
proach as was discussed after Lemma 1, the vertices of £;
that lie on the two arcs above one of f; and f; and below
the other can be enumerated in time O(nlogn + d) (du-
plicates can be avoided by assigning a vertex to exactly
one of the two great circles on which it lies).

5 The Algorithm

The algorithm uses a volume sweep to compute the o-
aspect graph. A plane w, parallel to o, is swept from o in
the direction of o’s normal. This direction is defined as
down. The sweep plane stores a set of polygons which is
the intersection of 7 with the boundaries of the polyhedra
of the scene. Edges A; in m correspond to faces f; in
the scene and vertices u; in 7 correspond to edges e;
in the scene. For each vertex in 7 the backprojection
is maintained. For each edge A; in 7, the cross section
of the aspect graph of f; is maintained. As m sweeps
through the scene, A; sweeps across f; and constructs
the aspect graph using a standard plane sweep.

The structure of = is updated as events occur cor-
responding to the intersection of = with certain points
in space. Events are stored in a priority queue in or-
der of increasing distance from the plane of 0. While
events remain in the priority queue, the next event is re-
moved from the queue and processed, possibly causing
new events to be added to the queue. Initially, 7 lies
in the plane of o, the structure on 7 is empty (we will
assume that no polyhedron intersects the plane of o) ,
and the priority queue contains the vertices of the scene.

For some events, discontinuity surfaces will be cast
which result in new discontinuity curves on the faces of
the scene below 7. Each such curve is stored in a list
associated with the face and is processed when reached
by =. If a discontinuity curve intersects the edge of a face
an edge event corresponding to the intersection point is
inserted into the priority queue.

An edge event occurs when a vertex p of 7 (corre-
sponding to some edge e of the scene) crosses a dis-
continuity surface. At this point, the backprojection
B = (P, L,S) at u changes with the addition or removal
of up to three vertices and edges. For an example, see

'Figure 4, in which the visible area of ¢ is shaded. Given

the three scene edges which define the discontinuity sur-
face <e,, €3, €. >, binary searches among the edges of the
corresponding £, £p,-and £, in £ determine which fea-
tures of the backprojection need to be changed. Since
the number of added or removed features is bounded,
the update takes time O(logn). Each new vertex in B
corresponds to a pair of polyhedron edges, say e, and e;.
Since these edges are visible from v, they define a dis-
continuity surface <e, e,, e, > which is cast as discussed
in Section 4.

Figure 4: o seen from either side of a surface

A face event occurs when 7 crosses a vertex v in the
aspect graph of a face f;. This corresponds to the sweep
line A; crossing v and can be treated in the usual manner
of the plane sweep in time O(logn).



Define a peak vertez of a polyhedron as one for which
all adjacent edges point down when directed outward
from the vertex. A peak vertez event occurs when =
crosses a peak vertex v. After = passes v, at least one
polygon must be added to the structure of 7, correspond-
ing to the intersection of = with the faces adjacent to v.
Since the polygons of 7 may be nested (although they
do not intersect), the new polygons can be located in
time O(n) by finding the innermost polygon containing
v. At v and at each vertex y; of the new polygons in
m, the backprojection is computed in time O(n?logn)
with a naive hidden surface removal algorithm that uses
a plane sweep. (More sophisticated algorithms could
achieve a lower expected cost. For example, see Mul-
muley [Mul89].) For each backprojection, discontinuity
surfaces are cast as described in Section 4. On each edge
A; of the new polygons in 7 (corresponding to face fi
adjacent to v) the cross section of f;’s aspect graph is
initialized. ,

A normal vertez event occurs when 7 crosses a non-
peak vertex v on a polyhedron ®. Let f;...fi be the
faces adjacent to v, ordered counterclockwise around v
as seen from the outside of ®. Let e; ...ex be the edges
adjacent to v: e; = f; N fi+1. For each edge e; above v,
the backprojection B; is known (at apoint u; = e; N7
arbitrarily close to v). The following steps are performed
in order.

1. For each edge e; above v, consider e;’s backprojec-
tion B; to be the backprojection at v and enumer-
ate the discontinuity surfaces generated by v as dis-
cussed in Section 4. Eliminate duplicates by storing
the surface names <e,v> in a dictionary. The sur-
faces thus enumerated are exactly the surfaces gen-
erated by v, since the part of the source visible from
v is the union of the parts visible from the points
p;. Cast the surfaces as discussed in Section 4.

2. For each edge e; below v do the following. For each
backprojection B; above v, determine the vertices
of B; that are above one of f; and f;;; and below
the other (as discussed in Section 4). These vertices
€s N ey are exactly those with which e; generates
a discontinyity surface <e;, ez, e3>. Let T; be the
union of these vertices. For each vertex e, Ne; in
T;, cast the the surface <e;,eq,€,>. See Figure 5,
in which T; = {u3...u7} and Ti_; = {u;...us}.

3. The backprojection on each edge e; below v is com-
puted from the backprojection on e;_; as follows.
For simplicity, assume that no discontinuity curve
of f; intersects v. Let X;_; be the vertices of T;_;
that are below f;, sorted radially around e;_; in
counterclockwise order as seen from v. Let T; be
the vertices of T; that are below f;, sorted radi-
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Figure 5: Backprojection on adjacent edges of a face

ally around e; in counterclockwise order. In Fig-
ure 5, I; = <us,ug,ur> and T;; = <up,us>.
Let B = B;_j. For each vertex e, Ne, € T;_; in or-
der, update B as though the viewpoint of B crossed
the discontinuity surface <e;_1,e4,€3>. Then, for
each vertex e;Ne; € I; in order, update B as though
the viewpoint of B crossed the discontinuity surface
<e;,€q,ep>. After this procedure, B = B;. The
various backprojections B; below v are stored in a
persistent structure that costs log time and space
per update (somewhat similar to the persistent bal-
anced tree of Sarnak and Tarjan [ST86]).

4. After 7 passes v, the polygons of = are updated by
the addition and removal of a bounded number of
vertices and edges. For each face f; strictly below v,
A; is initialized with the cross section of f;’s aspect
graph. '

Recall that the number of edges and faces adjacent
to v is bounded. Step 1 takes time O((n + d,)logn) to
enumerate the d, surfaces generated by v. For each edge
e, Step 2 takes time O((n+d;) log n) to enumerate the d;
surfaces generated by e;. The total cost for Step 3 is logn
times the number of discontinuity surfaces generated by
the edges at v since each much be crossed in computing
the backprojections B; below v and each must be sorted.
Thus the cost of a nonpeak vertex event is O(n log n) plus
O(nlogn) for each discontinuity surface that is cast. In
practice, the complexity of the backprojection is likely
to be very small and the fixed cost per vertex should be
less that O(nlogn).

Exclusive of the cost for casting surfaces, each peak
vertex event takes time O(n%logn) and each face and
edge event takes time O(log n).
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Theorem 1 The o-aspect graph of a scene of complezity
O(n) can be computed in time O((n?+pn?+dn+k)logn),
where p is the number of peak vertices, d is the number
of discontinuily surfaces in the scene, and k is the com-
plezity of the resulting o—aspect graph.

We expect p to be small in practice, so the running
time should be dominated by the dnlogn and klogn
terms.

Section 1 described the problem of computing the in-
tensity of light received by a query point on a surface
of the scene. This problem can be efficiently solved if
the structure of the visible light source (i.e. the backpro-

jection) is known for the region of the o-aspect graph

that contains the query point. The backprojections for
all regions can be efficiently computed with an algorithm
of Gigus, Canny, and Seidel [GCS91] which takes advan-
tage of the fact the adjacent regions in the aspect graph
have backprojections that differ in a bounded number of
features.

Their algorithm traverses the aspect graph and builds
an interval tree which stores the “life span” of each back-
projection feature during the traversal (i.e. the points
during the traversal that the feature is created and de-
stroyed). This tree uses space O(r) and takes time
O(rlogr) to construct, where r is the size of one back-
projection plus a constant times the number of regions.
The tree can produce backprojection of a particular re-
gion in time linear in the size of the backprojection and
logarithmic in the size of the tree.

6 Conclusion

We have introduced the problem of computing the o-
aspect graph for a set of polyhedra, which is of par-
ticular importance in accurately rendering polyhedral
scenes. We have presented an output sensitive algorithm
that solves the problem by sweeping a plane through the
scene. Two key .ideas used by the algorithm are that
the backprojection at various points in the scene can be
used to efficiently enumerate the discontinuity surfaces,
and that the backprojections can be “carried along” with
the sweep plane for very low cost. Furthermore, the use
of backprojections avoids the enumeration and casting of
all O(n®) potential discontinuity surfaces, which would
cost O(n*logn) in the best case.
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