303

LR-Visibility in Polygons

(Extended Abstract)

~Gautam Das

Paul J. Heffernan

Giri Narasimhan
Dept. of Mathematical Sciences, Memphis State University, Memphis, TN 38152

Abstract

We give a linear-time algorithm which, for a sim-
ple polygon P, computes all pairs of points s and
t on P that admit LR-visibility. The points s
and t partition P into two subchains, and we say
that P is LR-visible with respect to s and ¢ if
each point of P is visible from some point of the
other subchain.

‘1 Introduction

We consider here the LR-visibility problem for
simple polygons. Any two points s and t of
a simple polygon P partition P into two sub-
chains, which we call L and R, for left and right
chains. The LR-visibility question asks whether
each point of L can see a point of R, and each
point of R can see a point of L. If the answer
is yes, we say that P is LR-visible with respect
to s and t. Figure 1 shows a polygon that is
LR-visible for various point pairs s and ¢, and
Figure 2 one that is not LR-visible for any pair
s and t. '

We state four versions of the LR-visibility
problem for a polygon P:

1. determine whether a given pair s and ¢ ad-
mits LR-visibility;

2. determine whether there exists a pair s and
t which admits LR-visibility;

3. return a pair s and ¢ which admits LR-
visibility, if indeed such a pair exists;

4. return all pairs s and t which' admit LR-
visibility.

Version (4) is the strongest, and an algorithm
for it also solves the first three versions. In this
paper we solve to optimality the strongest ver-
sion: we give a O(n)-time algorithm that com-
putes all pairs of points s and ¢ that admit LR-
visibility for a simple polygon P with n vertices.
The output is in the form of O(n) pairs of sub-
chains §; and T, such that any pair of points
s € 5; and t € T; is a valid pair s and ¢. In Fig-
ure 1, the output subchains (Sy,71),.-.,(S4,T4)
are shown. Version (4) has been solved previ-
ously in [TL] in O(nlogn) time.

The question of LR-visibility falls in the larger
area of weak visibility in polygons, which has re-
ceived much attention by researchers. To say
that two sets are weakly-visible means that ev-
ery point in either set is visible from some point
in the other set. A simple polygon P is weakly-
visible from an edge e if e and P \ e are weakly-
visible. A weakly-visible chord ¢ of P is one such
that ¢ and P are weakly-visible. A polygon is
LR-visible if its left chain L and right chain R
are weakly-visible. Weak-visibility of a polygon
from an edge was first studied in [AT], and Sack
and Suri [SS] subsequently gave a linear-time al-
gorithm which computes all weakly-visible edges
of a simple polygon.

This paper is of interest not only because we



304

present an optimal result for an intriguing prob-
lem in polygonal visibility, but also on account of
the techniques we employ, and because of the re-
lationship between LR-visibility and other prob-
lems in polygonal visibility, such as the weakly-
visible chord and the two-guard problems. While
the two-guard problem has many formulations,
we will state just one for the sake of illustration:
a polygon P is walkable from point s to point ¢
if one “guard” can traverse the left chain L and
the other the right chain R from s to ¢ while
always remaining co-visible. Other formulations
require the guards to move monotonically or that
one guard traverses from ¢ to s. LR-visibility
is a subproblem of two-guard, in the sense that
a polygon must be LR-visible with respect to s
and t in order to be walkable for that pair. LR-
visibility is also a.subproblem of weakly-visible
chord, for it can be shown that two points s and
t of P are the endpoints of a weakly-visible chord
of P if and only if st is a chord of P and P is
LR-visible with respect to s and t.

As for LR-visibility, the four problem versions
listed above, namely testing a fixed pair s and ¢,
determining if a pair s and ¢ exists, and finding
one or all pairs s and t, exist for the weakly-
visible chord problem and for each formulation
of the two-guard problem. The authors have re-
cently developed a linear-time algorithm which
computes all weakly-visible chords of a simple
polygon (problem version (4)) [DHN], where the
result of the current paper is used as a subpro-
cedure. The previous best result [K] determines
whether there exists a weakly-visible chord and
if so constructs one (versions (2) and (3)) in
O(nlogn) time. For the two-guard problem, cur-
rently there exist optimal linear-time algorithms
for various formulations for fixed s and ¢ (version
(1)) [H], and O(nlogn)-time algorithms which
find all pairs s and ¢t (version (4)) for various
formulations [TL]. The authors are currently
working to develop optimal solutions for the all-
pairs version (version (4)) of various formulations
of the two-guard problem, and we feel that the
present work is an important step towards this
goal.

2 Preliminaries

We define notation for this paper. A polygonal
chain in the plane is a concatenation of line seg-
ments. The endpoints of the segments are called
vertices, and the segments themselves are edges.
If the segments intersect only at the endpoints of
adjacent segments, then the chain is simple, and
if a polygonal chain is closed we call it a polygon.
In this paper, we deal with a simple polygon P,
and its interior, int(P). Two points z,y € P are
visible (or co-visible) if Ty C P U int(P). We as-
sume that the input is in general position, which
means that no three vertices are collinear, and no
three lines defined by edges intersect in a com-
mon point.

If z and y are points of P, then Pow(z,y)

(Pccw(z,y)) is the subchain obtained by
traversing P clockwise (counterclockwise) from
z to y.
. The ray shot from a vertex v in direction d
consists of “shooting” a “bullet” from v in di-
rection d which travels until it hits a point of
P. Formally, if 7is the ray rooted at v in direc-
tion d, then the hit point of this ray shot is the
point of (P \ {v}) N 7 closest to v. Each reflex
vertex defines two special ray shots as follows.
Let v be a reflex vertex and v” the vertex adja-
cent to v in the clockwise direction. Then the
ray shot from v in the direction from v" to v is
called the clockwise ray shot of v. If v’ is the
hit point of the clockwise ray shot, then the sub-
chain Pow(v,v’) is the clockwise component of v
(see Figure 3). Counterclockwise ray shots and
components are defined in the same way. A com-
ponent is redundant if it is a superset of another
component.

As noted in [IK], the family of components
completely determines LR-visibility of P, since
a pair of points s and ¢t admits LR-visibility if
and only if each component of P contains either
s or t. The definition of redundant gives the fol-
lowing.

Lemma 1 A polygon P is LR-visible with re-
spect to s and t if and only if each non-redundant
component of P contains either s or t.

LR-visibility can be reduced to a problem



known as two-cut. Given a circle and a collec-
tion of (closed) arcs on the circle, we say that
two points of the circle form a two-cut if every
arc of the collection contains at least one of the
two points. To reduce LR-visibility for a poly-
gon P to an instance of two-cut, we parameterize
both P and a circle C, and map each point of
P to its corresponding point on C. This maps
a component of P to an arc of C. If we map
each non-redundant component of P to its cor-
responding arc of C, then the problem of finding
points s and ¢ on P that admit LR-visibility is
equivalent to finding a two-cut on C. Note that
the arcs of C are non-redundant in the sense that
their beginning and ending points appear on C
in the same order.

In [TL], an O(nlogn)-time algorithm is given
which computes all two-cuts for a collection of
n non-redundant arcs which are given in sorted
order. It is not difficult to modify this algorithm
to run in linear time. The output requires O(n)
space, because it is in the form of O(n) pairs of
intervals, such that any pair of points on a pair
of intervals is a two-cut. A polygon P with n ver-
tices has O(n) components. This means that to
solve the LR-visibility problem, it suffices to give
a linear-time method to construct in sorted order
all non-redundant components. We address this
problem in the next section.

3 Non-redundant components

We discuss here our method for constructing all
non-redundant components of a polygon P. The
main tool is a procedure which produces a super-
set of all non-redundant clockwise components.
A symmetric procedure does the same for coun-
terclockwise components. This yields a superset
of all non-redundant components, from which the
non-redundant components in sorted order can
be extracted, as we will now show.

Suppose we have a set of clockwise components
which contains all the non-redundant ones. As
we traverse P in clockwise order, we encounter
a beginning point and an ending point of each
component. Since the beginning points are ver-
tices of P, they can be bucket-sorted in linear

305

time. Suppose we traverse P twice counterclock-
wise. Each time we encounter a beginning point,
we compare the ending point of the component
to the ending point of the previous component;
if the current component contains the previous
component, then the current component is re-
dundant and therefore is deleted from the list
of components. We must traverse P twice since
one of the first components considered may be
redundant with respect to one of the last ones.
After an analogous procedure is performed for
counterclockwise components, we have two lists
of components, each in sorted order, which can
be merged and pruned of redundant components
in linear time to obtain a sorted list of all non-
redundant components.

We now turn our attention to the problem of
computing a collection of clockwise components
that contains all non-redundant ones. The dis-
cussion of this algorithm in this extended ab-
stract is incomplete, but we attempt to express
the major ideas behind it. Throughout this sec-
tion, if v is a reflex vertex, then v’ represents the
hit point of the clockwise ray shot from v, so that
Pew(v,v’) is the clockwise component from v.

The outline of the procedure is as follows. We
fix a vertex z of P. We traverse P counterclock-
wise from z, computing clockwise components as
we go. Each time we encounter a reflex vertex v,
we determine whether the clockwise component
of v is redundant with respect to any of the previ-
ously computed components. Let v represent the
current reflex vertex and Pow(w,w’) the most
recently computed clockwise component. To pro-
cess v, we perform two steps:

1. we determine whether v’ lies on Pow (v, w')
(as in Figure 4(a)) or Poow(v,w’) (as in
Figure 4(b));

2. if v’ lies on Pow (v, w') then we compute v’

Because step (2) is performed only for certain
components, the hit points v’ that are actually
computed by step (2) occur in a counterclockwise
order on P (although they may wrap around P
twice).

We show that the components constructed by
the above procedure include all non-redundant



306

clockwise components. It suffices to show that
the clockwise component from the current re-
flex vertex v is redundant if its hit point v’ lies
on Pcow(v,w’). Consider the relationship be-
tween the clockwise components Pow (v, v’) and
: Pcw('w, w’). If v' lies on PC’CW('U, w’) (a.s in
Figure 4(b)), then Pow(v,v’) contains the com-
ponent Pow (w,w’), implying that the clockwise
component from v is redundant.

There are two reasons why the above proce-
dure may compute a component that is later
found to be redundant. One is that a clockwise
component may contain a counterclockwise com-
ponent, or vice versa. The other is that the first
clockwise components computed by the counter-
clockwise traversal of P may contain the last
component computed.

Having seen that the procedure is correct, we
now proceed to discuss how it is that steps (1)
and (2) can be performed in O(n) time. Con-
structing the non-redundant components with
standard ray shooting techniques would yield
a time bound of O(nlogn), since each shot
requires O(logn) time [CG]. By strategically
choosing not to construct certain (redundant)
components, our algorithm is able to perform

faster. The key observation, noted earlier, is that

the hit points of the constructed components ap-
pear in counterclockwise order. Thus, while the
traversal for reflex vertices v is going on, a si-
multaneous traversal for (constructed) hit points
v’ is also taking place. The fact that this sec-
ond traversal proceeds monotonically around P
is crucial to the linear run-time.

The manner in which steps (1) and (2) are
actually performed in O(n) time is a matter of
great detail. We will try to convey a few of the
main ideas that are used in the methods of exe-
cution.

The algorithm of this paper resembles those
of [H] both in spirit and in many of the tech-
niques. Our techniques must be stronger, be-
cause we compute all pairs s and ¢, while [H)
deals with a fixed pair. A key question in both
papers is asking where a ray shot from a vertex
y hits. If y and z are points of P, let FE(y, z)
be the edge of the shortest path from y to z in-
cident to y (the first edge), and let dFE(y,z)

be the direction of FE(y,z). A ray shot from
y has a direction that is either “left” or “right”
of dFE(y,z). A version of the lemma below is
given in [H] (see Figure 5). '

Lemma 2 A ray shot from y hits Pow(y, z) if
and only if the shot is “left” of dFE(y, z) (equiv-
alently, the shot hits Pccw(y, z) if and only if
the shot is “right” of dFE(y, z)).

A shortest path tree from a point z of P, de-
noted SPT(z), is the union of all shortest paths
from z to a vertex of P. Such a structure can be
constructed for z in O(n) time [GHLST] (given
a triangulation of P, which can be constructed
in O(n) time [C]), and SPT(z) can be used to
provide each point of P with constant-time ac-
cess to the first edge of its shortest path to z.
By Lemma 2, this means that given a ray shot
from a vertex y, we can determine in constant
time whether the hit point lies on Pow(y,z)
or Pccw(y,z), if z has been preprocessed. In
the clockwise component algorithm, we compute
SPT(z) from the fixed point z. We also compute
shortest path trees from other vertices at vari-
ous stages of the algorithm, both with respect to
the entire polygon P and within certain subpoly-
gons. These structures are used in the efficient
execution of step (1), where we must determine
(in amortized constant time) where a hit point
lies on P with relation to two other points.

The first edges of shortest paths are also used
to answer the visibility question of step (2),
which asks that a hit point v’ actually be re-
turned. Imagine two points a and b of P, such
that ab is a chord, and suppose that we have
constructed SPT(a) and SPT(b). Let y and 2
be points of P on opposite sides of the chord ab
(e.g. yis on Pcw(a,b) and z on Pocw(a,b)). De-
fine a cone around y, that is defined by the two
rays rooted at y and in the directions dFE(z,a)
and dFE(z,b). By Lemma 2, a ray shot from
y crosses ab if and only if the direction of the
ray shot lies in (the interior of) the cone of y.
If we define a cone of z in the same manner, we
see that y and z are visible if and only if each is
in (the interior of) the cone of the other. Step
(2) consists of finding a hit point v’, and it is



performed basically by traversing counterclock-
wise from a starting point, where we know that
v’ lies in the counterclockwise direction from the
starting point (a condition guaranteed by an in-
ductive property and by the answer returned by
step (1)). The algorithm dynamically maintains
a chord ab such that v and v’ lie on opposite sides
of ab whenever step (2) is called (in [H], a chord
ab is used, but it remains constant throughout
a procedure). When we encounter a point 2
that intersects the ray rooted at v, we determine
whether z and v are visible; if they are we have
found our hit point v/, and if not we continue our
traversal in search of v’.

Another observation is worth stating: a poly-
gon P that is LR-visible for some pair of points
s and ¢ cannot have three disjoint components.
This is true because this situation results in three
disjoint arcs in the corresponding two-cut prob-
lem. The observation is important for our al-
gorithm because the discovery of a pair of dis-
joint components is a special case that results in
some extra work—it can be roughly thought of
as having to “start over.” However, the observa-
tion guarantees that this special case can occur
only a constant number of times in an LR-visible
polygon,; if it occurs too often the algorithm halts
and answers that P is not LR-visible.

References

[AT] D. Avis and G.T. Toussaint, “An optimal
algorithm for determining the visibility of a
polygon from an edge,” IEEFE Transactions on
Computers, 30 (1981), pp. 910-914.

[C] B. Chazell¢, “Triangulating a simple polygon
in linear time,” Discrete and Computational
Geometry, 6 (1991), pp. 485-524.

[CG] B. Chazelle and L. Guibas, “Visibility and
intersection problems in plane geometry,” Dis-
crete and Computational Geometry, 4 (1989),
pp. 551-581.

[DHN]
G. Das, P.J. Heffernan, and G. Narasimhan,
“Finding all weakly-visible chords of a poly-
gon in linear time,” manuscript, 1993.

307

[GHLST] L. Guibas, J. Hershberger, D. Leven,
M. Sharir and R. Tarjan, “Linear time algo-
rithms for visibility and shortest path prob-
lems inside triangulated simple polygons,” Al-
gorithmica, 2 (1987), pp. 209-233.

[H] P.J. Heffernan, “An optimal algorithm for
the two-guard problem,” to appear in Proc.
9th Annual ACM Symp. on Computational
‘Geometry, 1993.

[IK] C. Icking and R. Klein, “The two guards
problem,” Proc. 7th Annual ACM Symp. on
Computational Geometry, 1991, pp. 166-175.

[K] Y. Ke, “Detecting the weak visibility of a
simple polygon and related problems,” Tech.
Report, The Johns Hopkins University, 1987.

[SS] J.-R. Sack and S. Suri, “An optimal al-
gorithm for detecting weak visibility,” IEFEE
Transactions on Computers, 39 (1990), pp.
1213-1219.

[TL] L.H. Tseng and D.T. Lee, “Two-guard
walkability of simple polygons,” manuscript,
1993. .



A ?o\:mmn Whith & Mok LR-Visible

A LR- Visible Po‘.jjoh

Flave 2
”
Fieore 1

A Clockwise Component,

Flavke 3

()

P (3:3)

o)

¢ ompuXing Clockwice Comyonanie
- al

Flaure 4
TIMORE 4



